Computer Science IF862Boolean Algebra and Propositional Logic
Name:Boolean Worksheet 3 – Karnaugh Maps
Criterion 4 – Demonstrate knowledge and understanding of computer architecture.
- Determine the Boolean expression for each of the following Karnaugh Maps.
B
0 / 1
A / 0
1 / 1
Computer Science IF862Boolean Algebra and Propositional Logic
0 / 1
A / 0
1 / 1
Computer Science IF862 Boolean Algebra and Propositional Logic
Computer Science IF862 Boolean Algebra and Propositional Logic
0 / 1
A / 0
1 / 1 / 1
B
0 / 1
A / 0 / 1
1 / 1
C
0 / 1
0 / 0
A / 0 / 1 / B
1 / 1 / 1
1 / 1 / 0
C
0 / 1
0 / 1 / 1 / 0
A / 0 / 1 / B
1 / 1
1 / 0
- Fill in the Karnaugh maps for the following expressions
a ᴠ b
B0 / 1
A / 0
1
(aᴧb)ᴠ(aᴧc)
C0 / 1
0 / 0
A / 0 / 1 / B
1 / 1
1 / 0
(aᴧb) ᴠ (aᴧ~b)
B0 / 1
A / 0
1
(aᴠb)ᴠ(bᴧ~c)
C0 / 1
0 / 0
A / 0 / 1 / B
1 / 1
1 / 0
- Convert the truth table to a Karnaugh map and then to the relevant expression
A / B / C / D / F
0 / 0 / 0 / 0 / 0
0 / 0 / 0 / 1 / 0
0 / 0 / 1 / 0 / 0
0 / 0 / 1 / 1 / 0
0 / 1 / 0 / 0 / 0
0 / 1 / 0 / 1 / 0
0 / 1 / 1 / 0 / 1
0 / 1 / 1 / 1 / 0
1 / 0 / 0 / 0 / 0
1 / 0 / 0 / 1 / 0
1 / 0 / 1 / 0 / 0
1 / 0 / 1 / 1 / 1
1 / 1 / 0 / 0 / 0
1 / 1 / 0 / 1 / 0
1 / 1 / 1 / 0 / 1
1 / 1 / 1 / 1 / 1
C
0 / 0 / 1 / 1
0 / 0
A / 0 / 1 / B
1 / 1
1 / 0
0 / 1 / 1 / 0
D
- Write the Boolean expressions for the following K-maps:
C
0 / 0 / 1 / 1
0 / 1 / 0
A / 0 / 1 / B
1 / 1
1 / 0
0 / 1 / 1 / 0
D
C
0 / 0 / 1 / 1
0 / 0
A / 0 / 1 / B
1 / 1 / 1 / 1
1 / 1 / 1 / 0
0 / 1 / 1 / 0
D
C
0 / 0 / 1 / 1
0 / 1 / 0
A / 0 / 1 / 1 / 1 / B
1 / 1 / 1
1 / 0
0 / 1 / 1 / 0
D
C
0 / 0 / 1 / 1
0 / 1 / 0
A / 0 / 1 / 1 / B
1 / 1
1 / 0
0 / 1 / 1 / 0
D
- Fill in the Karnaugh maps for the expressions.
C
0 / 0 / 1 / 1
0 / 0
A / 0 / 1 / B
1 / 1
1 / 0
0 / 1 / 1 / 0
D
~a ᴧ ~b
C0 / 0 / 1 / 1
0 / 0
A / 0 / 1 / B
1 / 1
1 / 0
0 / 1 / 1 / 0
D
(~aᴧ~cᴧ~d) ᴠ (aᴧbᴧ~d)
- Draw alogiccircuit to implement the following truth table:
A / B / C / Output
0 / 0 / 0 / 0
0 / 0 / 1 / 0
0 / 1 / 0 / 0
0 / 1 / 1 / 1
1 / 0 / 0 / 0
1 / 0 / 1 / 1
1 / 1 / 0 / 1
1 / 1 / 1 / 0
A / B / X
0 / 0 / 0
0 / 1 / 0
1 / 0 / 1
1 / 1 / 1
- A function X has thistruth table. Draw a K-map for the function and use the K-map to simplify the function.
A / B / C / X
0 / 0 / 0 / 0
0 / 0 / 1 / 0
0 / 1 / 0 / 1
0 / 1 / 1 / 1
1 / 0 / 0 / 1
1 / 0 / 1 / 1
1 / 1 / 0 / 0
1 / 1 / 1 / 0
- A function X in three variables has this truth table.
a) Simplify the function using a K-map.
b) Show how this function can be implemented as a circuit containing and,or, and notgates.