Water Quality at DohenyStateBeach

Kim Chené, Brittany Harding

Department of Biological Science

SaddlebackCollege

Mission Viejo, CA92692

Escherichia coli is prevalent in the top layer of sand at some of the area's most popular beaches, even when the surrounding ocean water tested "clean". By studying the water bacteriology of a specific oceanic community, an investigator can determine if that community is affected by differing levels of bacteria in its environment. All hillside runoff most likely contains coliform bacteria, more specifically Escherichia coli. Testing for E. coli is necessary, as all coli forms may be suppressed by high populations of other organisms. Indicators of pollution include algal bloopms[JD1], lichens, erotological forms of diatoms; coliform bacteria, “sewage worms,” in addition to the more obvious signs of contamination, such as flu symptoms in humans or disorientation in marine mammals. [JD2]Three points were selected for the collection water samples at DohenyStateBeach in DanaPoint, California. The first sample was 100 meters [JD3]directly west (toward the ocean) to the storm run-off; the second, south 100 meters (along the beach)[JD4]; and the third, 100 meters north (along the harbor). The samples were tested for the presence of coli form bacteria. The presence of gas or acids in the tubes after the incubation period indicated the presence of coliform bacteria in the sample. The most probable number [JD5](MPN) was then calculated in order to determine the concentration of coliform organisms at each location.The investigators hypothesized that there would be a great difference between each point that the samples were taken[JD6].[JD7] However, An[JD8] ANOVA[JD9]of the means yields p > 0.05 (0.27812)[JD10]. There is no difference between the means; thus, coliform bacteria concentration is equivalent in all three locations.

Introduction[JD11]

Certain elements that are introduced to the beaches of Southern California are extremely harmful to the marine life and its surrounding environment. Such elements are often referred to as pollution. If severe, water pollution can kill large numbers of fish, birds, and other animals, in some cases killing[JD12] all members of a species in an affected area. Not only will it affect those living in and around that area, but will also affect anyone or thing that is introduced to the water or an organism from that area.[JD13] Pollution makes streams, lakes, and coastal waters unpleasant to look at, to smell, and to swim in[JD14]. Fish and shellfish harvested from polluted waters may be unsafe to eat. People who ingest polluted water can become ill, and,[JD15] with prolonged exposure, may develop cancers or bear children with birth defects (Hart 2008). Several studies have concluded that it is not only unsafe for humans to submerge themselves in such water, but in some cases it is known to be lethal. Individuals who swam in areas adjacent to flowing storm drains were fifty percent more likely to develop a variety of symptoms than those who swam further away from the same drain [JD16](Osborne 2004). Unfortunately, among these fatalities, the largest grouping was children under five years[JD17]because their immune systems are less developed than that of individuals over five years of age and growing bodies take in substances more rapidly than do mature ones (Lear and Lewis 2008).

Another obstacle for public health is the chlorine used to treat public water, which can turn into chloroform when it mixes with other materials in the water, which may increase the risk of miscarriage and poor fetal growth.[JD18]Many petroleum products are poisonous if ingested by animals, and spilled oil damages the feathers of birds or the fur of animals, often causing death. In addition, spilled oil may be contaminated with other harmful substances, such as polychlorinated biphenyls [JD19](PCBs) (Hart 2008).

Whether they enter the ocean by raining out of the atmosphere, running off the land in streams and rivers, or by coming directly from industrial or municipal sources, large amounts of pollutants generated by modern society end up in the sea. Chemicals used to kill unwanted animals and plants, for instance on farms or in suburban yards, may be collected by rainwater runoff and carried into streams, especially if these substances are applied too lavishly. Some of these chemicals are biodegradable and quickly decay into harmless or less harmful forms, while others are non-biodegradable and remain dangerous for a long time.

When animals consume plants that have been treated with certain non-biodegradable chemicals, such as chlordane and dichlorodiphenyltrichloroethane (DDT), these chemicals are absorbed into the tissues or organs of the animals. When other animals feed on these [JD20]contaminated animals, the chemicals are passed up the food chain. With each step up the food chain[JD21], the concentration of the pollutant increases. This process is called biomagnifications[JD22] or bioaccumulation (Hart 2008).

What seems to be the most talked about health threat today is a pathogen that is water borne and also lies within several of our food items known as E. coli[JD23]. The correct term,Escherichia coli,[JD24] is a common type of bacteria that can get into food, like [JD25]beef and vegetables. If the water that people or animals and plants [JD26]are exposed to contains any human waste, it can carry the E. coli bacteria. Someone who has[JD27]E. coli infection may have these symptoms: bad stomach cramps and belly pain, vomiting,[JD28]diarrhea, sometimes with blood in it[JD29].[JD30]One strain of E. coli was found in fresh spinach in 2006 and some fast-food hamburgers in 1993 (Nichols 2008). Beef can contain E. coli because the bacteria often infect cattle. It can be in meat that comes from cattle and it's also in their feces. [JD31]This can occur if the manure is used for fertilizer (a common practice to help crops grow[JD32]) or if water contaminated with E. coli is used to irrigate the crops.

Investigators decided to test the water quality at the popular beach in Southern California named DohenyStateBeach. A total of thirty sample bottles of water were collected from the coast. Ten were collected from 100 meters south of Salt Creek, which runs directly into the ocean water at the beach, then ten more were taken from the direct line of the creek to the ocean, and another ten were taken from 100 meters north of the creek. Investigators hypothesized that there would be a great difference in fomenters and gas producers between the locations of the samples taken. E. coli, which is found in large numbers in the feces of all animals, lives longer in water than most intestinal pathogens do. Therefore, if no E. coli are present, there should be no intestinal pathogens present in the water sample. This is why testing for coliform organisms are performed as a daily ritual by water departments and waste-water (sewage) treatment plants. It is regularly tested for in coastal sea water samples, as well as runoff water. The first bacterial test is a screening test to sample water for the presence of coliform organisms. A series of lactose fermentation tubes are inoculated with the water sample. If the presumptive test is negative, no further testing is performed, and the water source is considered microbiologically safe. If, however, any tube in the series shows acid and gas, the water is considered unsafe and the confirmed test is performed on the tube displaying a positive reaction. The presumptive test is also designed to estimate the concentration of coliform organisms, called the most probably number (MPN) in the water sample.[JD33]

Materials & Methods[JD34]

Thirty water samples were collected on the night of October 25th, 2009[JD35]at 9:30 pm during the[JD36] high tide of[JD37]DohenyStateBeach. Ten sample bottles were filled at 100 meters South and North of the San Juan Creek as well as another ten collected in the direct line from the creek to the ocean. Each bottle was then labeled using a grease pencil to indicate what number the sample was and whether the sample was from the North, South or the “Middle” which was the direct line form the creek to the ocean. Ten milliliters of every sample wasplaced into three, triple strength lactose tubes, 1 ml of each sample into three regular strength lactose tubes, and 0.1 ml in three more regular strength lactose tubes. Each tube was then labeled using a grease pencil [JD38]to note the number of the sample, the amount of sample water included, as well as whether it was triple or single strength lactose.The tubes were incubated at about 40̊ C for twenty-four hours. After the incubation period,[JD39]investigator[JD40]were then able to record the results.The presence of gas[JD41] or acids in the tubes after the incubation period indicates[JD42] the presence of coliform bacteria in the sample. The way to tell if there is gas in the incubated tubes is to look to see if there was layer of bubbles atop the sample. If the bubbles were present then obviously the water sample held bacteria that formed gasses. To tell if the sample held any bacteria causing fermentation, the water sample in the incubated tube would turn a distinct yellow color from its original green color before the incubation process.[JD43]The most probable number[JD44](MPN) [JD45]was then calculated in order to determine the concentration of coliform organisms at each location.[JD46]

Results[JD47]

Water samples were collected from a midpoint at DohenyStateBeach, and from one-hundred meters north of that point, and one-hundred meters south. The MPN was calculated from each of the test tubes, and the mean MPN was calculated for each location. The North mean MPN was 1018; Middle mean MPN was 1124; South mean MPN was 591.2.[JD48] A single-factor ANOVA test was conducted to compare the means. The ANOVA is[JD49] appropriate because it compares more than two means[JD50] at once and[JD51]yields one p-value for the means, collectively. There was no[JD52]difference;[JD53]a Bonferroni Correction will not be needed.[JD54]

[JD55]

Figure 1:MPN, or the most probable number index, is used as a measure of the amount of coliform bacteria present in a sample of water. [JD56]The locations were chosen one-hundred meters from each other, North, representing the mean of the samples taken one-hundred meters north from the Middle location, and South representing one-hundred meters south from the middle location.[JD57] An ANOVA of the means yields p > 0.05 (0.27812). There is no difference between the means; thus, coliform bacteria concentration is equivalent in all three locations.[JD58]

Discussion[JD59]

The results of the presumptive test were expected to be different for each location. After incubation, a reaction was observed in each of the triple strength tubes, and in one-hundred twenty-seven out of the one-hundred eighty single strength tubes[JD60]. However, a portion of the South single strength samples were put into a separate incubator, and incubated at a much higher temperature, which could account for the large difference between the mean MPN of the South when compared to the other two measures.[JD61]Regardless of the source of error, coliform bacteria, likely including enteric pathogens, are present in the water at DohenyStateBeach. [JD62]An ANOVA was used to compare the means of the three different locations. The resulting p-value showed that there was no difference between the bacterial concentrations of the three locations. Thus, the initial hypothesis was proved wrong[JD63]. According to the results, there is an abundance[JD64] of bacteria spread equally throughout the beach.

Consumption and recreational use of the water at DohenyStateBeach is not advised.[JD65] In addition to being unsafe for human consumption, the poor quality of the observed water samples may indicate severe alterations [JD66]beneath the surface. A high-traffic area, Doheny is prone to run-off from deforestation, including[JD67] roadwork, development of residential areas, and other disturbances that aid in ecological change[JD68]. These changes often favor introduced species over indigenous or “native” organisms [JD69]at all levels of biological organization and can result in changes in microbial diversity, including the introduction of new or increased numbers of pathogens and indicator organisms (Osborne 2008).

Pollution at this location could easily be controlled by implementing more trees at the waterway to block sediment runoff from streams into the ocean, less use of fertilizers and other nutrients that promote plant growth, and careful clean-up of road construction.[JD70]United States legislation proposed the cleaning[JD71] up of sewage treatment plants and industries that discharge pollutants into waterways[JD72](Clean Water Act 1977); but other sources of contamination are still present, such as sulfur dioxide from power plants, garbage in landfills, and other nonpoint sources. [JD73](Hart 2008)[JD74]These contaminants which accumulate in the air and reach the ocean through precipitation are harder to control.

Acknowledgments[JD75]

Investigators thank Professor Steve Teh for not only his help but his coordination for all of the materials we needed. We also thank Vince Fiorentino for helping us to collect the water samples despite that fact that is was extremely cold and at night; thanks for getting wet![JD76]

[JD77]References[JD78]

Osborne, Mary Jane. Committee on Indicators for Waterborne Pathogens, National Research

Council. “Indicators for Waterborne Pathogens.” The National Academies Press. NationalAcademy of Sciences, 2004.

Crook, James. Committee to Evaluate the Viability of Augmenting Potable Water Supplies with

Reclaimed Water, National Research Council. “Issues in Potable Reuse: The Viability of Augmenting Drinking Water Supplies with Reclaimed Water.” The National Academies Press, 1998.

Hardison, J. et. Al. “Laboratory Manual for Bio 15-General Microbiology.” Pgs 109-112.

Mcgraw-Hill 2007

Lear, G, and G.D. Lewis. “Impact of catchment land use on bacterial communities within stream

biofilms.” Environmental indicators, Volume 9, Issue 5, September 2009, Pages 848-855. 2008Elsevier Ltd.

Nichols, Reid C. Marine Pollution. Encyclopedia of Marine Science. New York: Facts on File

Inc., 2008.

Rohlich, Gerard. Safe Drinking Water Committee, National Resource Council. “Drinking

Water and Health.” Volume 1, 1977, Pages 63-134. NationalAcademy of Sciences, 1977.

[JD79][JD80]

Review Form

Department of Biological Sciences

SaddlebackCollege, Mission Viejo, CA92692

Authors: Kim Chené and Brittany Harding

Title: Water Quality at DohenyStateBeach

Summary

Summarize the paper succinctly and dispassionately. Do not criticize here, just show that you understood the paper.

E. coli is a waterborne bacteria that can be found in animal feces. If waste products come in contact with water, the colonies can survive for an extended amount of time. It can be found in vegetables and meats. Because of this, E. coli is usually tested for, because if it is present, other pathogens could be present.

The investigators were testing water quality at DohenyStateBeach at three different locations near Salt Creek. They hypothesized a greater difference between the means of the MPNs of the testing locations. They ran a presumptive test with single-strength and triple-strength lactose. Samples of water from the three locations were placed into the different lactose tubes and incubated. They found reactions (gas or color change) in 127/180 tubes. They got mean MPNs for the North, Middle, and South testing locations of 1018,1124,and 591.2, respectively. A single-factor ANOVA test determined that there was no significant difference between the mean MPNs.

They explained that there was an abundance of E. coli found. It was expressed that consumption of use of the water was not advised. The number of E. coli colonies could be lowered with more vegetation being planted so less run-off from construction, development, etc would not make it to the beach.

General Comments

Generally explain the paper’s strengths and weaknesses and whether they are serious, or important to our current state of knowledge.

Strengths:

  • Thorough Background Information –detailed in giving the reader a thorough introduction as to why E. coli is being tested for in this experiment.
  • Solution Proposal –interesting to hear about a solution to the poor water quality.
  • Important Topic –water quality testing at a local beach and reporting the results is important to the community.

Weaknesses:

  • Grammar – remember to keep it in past tense, watch for run-on sentences, watch for unprofessional/non-scientific diction, etc.
  • Relevance of Findings –in relation to the presence of E. coli being found at DohenyBeach, you didn’t explain the relevance of this find. As explained in the JD comments made on the paper, there is a interval at which the MPN value indicates it’s safe for the water’s usage (consumption, interaction with). Your study is titled “Water Quality at DohenyStateBeach,” but you never clearly state that the quality was “bad” or HOW bad it was. We just got MPN values that you haven’t explained enough about [refer to internal comments].
  • Hypothesis –your hypothesis was that “there would be a great difference between each point that the samples were taken”. You were hypothesizing that the quality at each location would be vary. It didn’t tie in perfectly with your title. You’re testing for water quality, but your hypothesis is looking for a difference between 3 test sites.

Technical Criticism

Review technical issues, organization and clarity. Provide a table of typographical errors, grammatical errors, and minor textual problems. It's not the reviewer's job to copy Edit the paper, mark the manuscript.

This paper was a rough draft

  • Graph –some major revisions to the figure description and some minor revisions to improve the graph must be done.
  • Organization –do not overlap details in the Introduction and the Methods and Materials section. (Look to those sections for the comments on this topic).
  • Description –make sure the Title properly reflects the project.
  • Hypothesis –make sure hypothesis reflects Title (“great difference between locations”…but maybe your hypothesis should read more along the lines of “there will be a significant difference between the MPNs/pollution at the 3 different locations”. This targets the inclusion of quality.
  • (For additional input, look to the marked copy.)

[JD1]SP: Did you mean “algal blooms,” otherwise define what this is later in your paper.