Algebra 1 (3rd Benchmark Review)
What is the simplified form of each expression?
____1.
a. / –1 / b. / 1 / c. / –4.2 / d. / 0____2.
a. / / b. / / c. / / d. /____3.
a. / / b. / 9 / c. / / d. / 6____4.
a. / / b. / / c. / / d. /____5.
a. / / b. / / c. / / d. /____6.
a. / / b. / / c. / / d. /____7.What is the value of for x = 3 and y = –1?
a. / / b. / / c. / –108 / d. /____8.What is the value of for x = 2 and y = –4?
a. / 16 / b. / –4 / c. / / d. / –16____9.What is the value of for x = 2 and y = –4?
a. / / b. / 128 / c. / / d. /____10.Suppose that the amount of algae in a pond doubles every 4 hours. If the pond initially contains 40 pounds of algae, how much algae will be in the pond after 12 hours?
a. / 320 pounds / c. / 640 poundsb. / 160 pounds / d. / 64 pounds
What is each expression written using each base only once?
____11.
a. / / b. / / c. / / d. /____12.
a. / 8 / b. / 1 / c. / 0 / d. / 7.578____13.
a. / –5 / b. / 511 / c. / 1 / d. / 11____14.
a. / / b. / / c. / / d. /What is the simplified form of each expression?
____15.
a. / / b. / / c. / / d. /____16.
a. / / b. / / c. / / d. /____17.
a. / / b. / / c. / / d. /____18.
a. / / b. / / c. / / d. /Simplify the expression.
____19.
a. / 45 / c. / 18b. / 243 / d. / 9
____20.
a. / / b. / / c. / / d. /____21.
a. / 4 / c. / 256b. / / d. / 1024
____22.
a. / / b. / / c. / / d. /____23.
a. / / b. / / c. / / d. /____24.
a. / / b. / / c. / / d. /____25.
a. / / b. / / c. / / d. /____26.
a. / / c. /b. / / d. /
____27.
a. / / b. / / c. / / d. /____28.
a. / / b. / / c. / / d. /____29.
a. / / b. / / c. / / d. /____30.
a. / / b. / / c. / / d. /____31.
a. / / b. / / c. / / d. /____32.
a. / / b. / / c. / / d. /____33.
a. / / b. / / c. / / d. /____34.
a. / / b. / / c. / / d. /____35.
a. / / b. / / c. / / d. /____36.
a. / / b. / / c. / / d. /____37.
a. / / b. / / c. / / d. /____38.
a. / / b. / / c. / / d. /____39.
a. / / b. / / c. / / d. /____40.
a. / / b. / / c. / / d. /____41.
a. / / b. / / c. / / d. /____42.
a. / / b. / / c. / / d. /____43.Kepler’s Third Law of Orbital Motion states that you can approximate the period P (in Earth years) it takes a planet to complete one orbit of the sun using the function , where d is the distance (in astronomical units, AU) from the planet to the sun. How many Earth years would it take for a planet that is 6.76 AU from the sun?
a. / 15.23 / c. / 154.46b. / 17.58 / d. / 3.58
____44.Does the table represent a linear or an exponential function?
x / 1 / 2 / 3 / 4y / 8 / 11 / 14 / 17
a. / exponential / b. / linear
____45.Does the rule represent a linear or an exponential function?
a. / exponential / b. / linear____46.Suppose a population of 40 crickets doubles in size every month. The function gives the population after x months. How many crickets will there be after 3 years?
a. / 2,880 crickets / c. / 320 cricketsb. / 240 crickets / d. / 2,748,779,069,440 crickets
____47.Suppose an investment of $3,800 doubles in value every decade. The function gives the value of the investment after x decades. How much is the investment worth after 2 decades?
a. / $152,000 / c. / $76,000b. / $15,200 / d. / $15,200
What is the graph of the function?
____48.
a. / / c. /b. / / d. /
____49.
a. / / c. /b. / / d. /
____50.
a. / / c. /b. / / d. /
____51.Suppose the population of a town is 8,600 and is growing 3% each year. Predict the population after 3 years.
a. / about 77,400 peopleb. / about 9,397 people
c. / about 26574 people
d. / about 232,200 people
____52.Suppose that the population of deer in a state is 1,500 and is growing 2% each year. Predict the population after 4 years.
a. / about 12,000 deerb. / about 1,624 deer
c. / about 3,110 deer
d. / about 24,000 deer
____53.A population of 1,750 cheetahs decreases by 11% per year. How many cheetahs will there be in the population after 10 years? Round your answer to the nearest whole number.
a. / 4969 / b. / 486 / c. / 546 / d. / 1640____54.A tractor costs $12,250 and depreciates in value by 6% per year. How much will the tractor be worth after 6 years?
a. / $7,943.85 / b. / $12,214.00 / c. / $17,376.86 / d. / $8,450.90____55.Is the sequence geometric? If so, identify the common ratio.
6, 12, 24, 48, ...
a. / yes; 2 / b. / yes; –2 / c. / yes; 4 / d. / no56.Does the table represent a linear or an exponential function? Explain.
x / 1 / 2 / 3 / 4y / 16 / 64 / 256 / 1024
What is the degree of each monomial?
____57.7m6n5
a. / 5 / b. / 11 / c. / 6 / d. / 7____58.5x6y3
a. / 6 / b. / 9 / c. / 5 / d. / 3____59.5x7
a. / 5 / b. / 35 / c. / 7 / d. / 12____60.–9
a. / –8 / b. / 0 / c. / –10 / d. / –9What is the sum or difference?
____61.6x7 + 8x7
a. / 14x7 / b. / –2x7 / c. / 14x14 / d. / 48x7____62.2x7 – 8x7
a. / –6x14 / b. / 10x7 / c. / –16x7 / d. / –6x7____63.2y5 – 4y5
a. / –2y10 / b. / –2y5 / c. / –8y5 / d. / 6y5Write the polynomial in standard form. Then name the polynomial based on its degree and number of terms.
____64.2 – 11x2 – 8x + 6x2
a. / –5x2 – 8x + 2; quadratic trinomialb. / –5x2 – 8x; quadratic binomial
c. / –6x2 – 8x – 2; cubic polynomial
d. / 6x2 – 8x + 2; cubic trinomial
____65.4g – 5g3 + 9g2 – 6
a. / 5g3 – 9g2 + 4g – 6; cubic trinomialb. / 9g3 – 5g2 + 4g – 6; quadratic binomial
c. / –5g3 + 9g2 + 4g – 6; cubic polynomial
d. / –6 + 4g + 9g2 – 5g3 ; cubic binomial
____66.3x + 2x2 – 6
a. / 3x – 6 + 2x2; not a polynomialb. / 3x + 2x2 – 6; cubic monomial
c. / 2x2 + 3x – 6; quadratic trinomial
d. / 2x2 + 3x – 6; fourth-degree binomial
____67.A biologist studied the populations of white-sided jackrabbits and black-tailed jackrabbits over a 5-year period. The biologist modeled the populations, in thousands, with the following polynomials where x is time, in years.
White-sided jackrabbits:
Black-tailed jackrabbits:
What polynomial models the total number of white-sided and black-tailed jackrabbits?
a. / / c. /b. / / d. /
Simplify the sum.
____68.(2u3 + 6u2 + 3) + (2u3 – 7u + 6)
a. / 9 – 7u + 6u2+ 4u3 / c. / 0u3 – 7u2 + 6u – 9b. / 0u3 + 6u2 – 7u + 9 / d. / 4u3 + 6u2 – 7u + 9
Simplify the difference.
____69.(–7x – 5x4 + 5) – (–7x4 – 5 – 9x)
a. / 2x4 + 2x + 8 / c. / –14x4 – 10x + 10b. / –14x4 + 10x + 10 / d. / 2x4 + 2x + 10
____70.(4w2 – 7w – 6) – (8w2 + 2w – 3)
a. / –4w2 – 9w – 3 / c. / –4w2 – 5w – 9b. / 12w2 + 9w + 3 / d. / 12w2 – 5w – 9
Simplify the product.
____71.2n(n2 + 3n + 4)
a. / 2n3 + 6n2 + 8n / c. / 2n3 + 6n + 8b. / 2n3 + 3n + 4 / d. / n2 + 5n + 4
____72.5a2(3a4 + 3b + 2)
a. / 8a4 + 8ab + 5a2 / c. / 15a6 + 15a2b + 10a2b. / 15a8 + 3b+ 10a2 / d. / 8a6 + 15a2b + 5a2
____73.8p(–3p2 + 6p – 2)
a. / –5p3 + 14p2 – 6p / c. / 14p2 – 6p – 5p3b. / 48p2 – 16p – 24p3 / d. / –24p3 + 48p2 – 16p
Find the GCF of the terms of the polynomial.
____74.26x2 + 34x4
a. / x2 / b. / 26x2 / c. / 2x4 / d. / 2x2____75.48x6 + 6x2– 26x3
a. / 6x2 / b. / x2 / c. / 2x2 / d. / 2x6Factor the polynomial.
____76.
a. / 2x(x2 + 2x + 4) / c. / 2x(x2 + 2x + 8)b. / 2x(x + 2)(x + 4) / d. / 2x3 + 4x2 + 8x
____77.25w6 + 35w3
a. / 5w2(5w4 + 7w) / c. / w3(25w3 + 35)b. / 5w3(5w3 + 7) / d. / 5(5w6 + 7w3)
____78.54c3d4 + 9c4d2
a. / 9c3d2(d2 + 6c) / c. / 9c4d2(d2 + 6)b. / 9c3d2(6d2 + c) / d. / 9c4d2(6d2 + 1)
____79.A sports team is building a new stadium on a rectangular lot of land. If the lot measures 7x by 7x and the sports field will be 5x by 5x, how much of the lot will be left over to build bleachers on?
a. / / c. /b. / / d. /
Simplify the product using the distributive property.
____80.
a. / / c. /b. / / d. /
____81.
a. / / c. /b. / / d. /
Simplify the product using a table.
____82.
/ –3–5
a. / / c. /
b. / / d. /
____83.
/ –54
a. / / c. /
b. / / d. /
Simplify the product using FOIL.
____84.(3x – 7)(3x – 5)
a. / 9x2 + 6x + 35 / c. / 9x2 – 36x – 35b. / 9x2 + 36x + 35 / d. / 9x2 – 36x + 35
____85.
a. / / c. /b. / / d. /
____86.A cylinder has a radius of 5x + 3 and a height of 4x + 2. Which polynomial in standard form best describes the total volume of the cylinder? Use the formula for the volume of a cylinder.
a. / / c. /b. / / d. /
____87.A sphere has a radius of 2x + 5. Which polynomial in standard form best describes the total surface area of the sphere? Use the formula for the surface area of a sphere.
a. / / c. /b. / / d. /
What is a simpler form of the expression?
____88.(2n2 + 5n + 3)(4n – 5)
a. / 8n3 + 10n2 – 13n – 15 / c. / 8n3 – 10n2 + 37n – 15b. / 8n3 + 30n2 – 37n – 15 / d. / 8n3 + 13n2 – 10n – 15
____89.(4k + 5)(3k2 – 4k – 4)
a. / 12k3 – k2 – 36k – 20 / c. / 12k3 – k2 + 4k – 20b. / 12k3 + 31k2 – 4k – 20 / d. / 12k3 + 36k2 – k – 20
What is a simpler form of each product?
____90.(2x – 6)2
a. / 4x2 – 24x + 36 / c. / 4x2 + 36b. / 4x2 – 8x + 36 / d. / 4x2 – 12x + 36
____91.(4x – 6y3)2
a. / 16x2 – 24xy3 + 36y6 / c. / 16x2 + 36y6b. / 16x2 – 48xy3 + 36y6 / d. / 16x2 – 4xy3 + 36y6
____92.A machinist creates a washer by drilling a hole through the center of a circular piece of metal. If the piece of metal has a radius of x + 10 and the hole has a radius of x + 6, what is the area of the washer?
a. / / c. /b. / / d. /
What is a simpler form of the following expressions?
____93.(j + 7)(j – 7)
a. / j2 + 14j – 49 / c. / j2 + 14j – 49b. / j2 – 14j – 49 / d. / j2 – 49
____94.(2n + 2)(2n – 2)
a. / 4n2 – 4 / c. / 4n2 + 2n – 4b. / 4n2 – 4n – 4 / d. / 4n2 + 4n – 4
____95.(4p – 8)(4p + 8)
a. / 16p2 + 64p + 64 / c. / 16p2 – 64b. / 16p2 – 64p – 64 / d. / 16p2 + 64
____96.(7m2 – 5)(7m2 + 5)
a. / 49m4 – 25 / c. / 49m2 – 25b. / 49m3 – 25 / d. / 49m4 + 25
What is the factored form of the following expressions?
____97.w2 + 18w + 77
a. / (w – 7)(w + 11) / c. / (w + 7)(w + 11)b. / (w – 7)(w – 11) / d. / (w + 1)(w + 77)
____98.d2 + 16d + 63
a. / (d – 7)(d – 9) / c. / (d + 7)(d + 9)b. / (d + 7)(d – 9) / d. / (d – 7)(d + 9)
____99.d2 – 19d + 90
a. / (d + 10)(d + 9) / c. / (d – 10)(d + 9)b. / (d – 10)(d – 9) / d. / (d + 10)(d – 9)
____100.x2 – x – 42
a. / (x – 7)(x + 6) / c. / (x + 7)(x – 6)b. / (x + 7)(x + 6) / d. / (x – 7)(x – 6)
____101.d2 – 14d + 45
a. / (d + 9)(d + 5) / c. / (d – 9)(d + 5)b. / (d + 9)(d – 5) / d. / (d – 9)(d – 5)
____102.d2 + 2d – 48
a. / (d + 6)(d + 8) / c. / (d – 6)(d + 8)b. / (d + 6)(d – 8) / d. / (d – 6)(d – 8)
____103.The area of a rectangular garden is given by the trinomial x2 + x – 42. What are the possible dimensions of the rectangle? Use factoring.
a. / x – 6and x + 7 / c. / x – 6and x – 7b. / x + 6 and x – 7 / d. / x + 6and x + 7
____104.The area of a rectangular painting is given by the trinomial x2 + 4x – 60. What are the possible dimensions of the painting? Use factoring.
a. / x – 6and x + 10 / c. / x – 6and x – 10b. / x + 6 and x – 10 / d. / x + 6and x + 10
What is the factored form of the following expressions?
____105.x2 – 10xy + 24y2
a. / (x + 6y)(x + 4y) / c. / (x + 2y)(x – 12y)b. / (x – 2y)(x + 12y) / d. / (x – 6y)(x – 4y)
____106.x2 – 6xy – 40y2
a. / (x – 4y)(x + 10y) / c. / (x – 4y)(x – 10y)b. / (x + 4y)(x – 10y) / d. / (x + 4y)(x + 10y)
What is the factored form of the expression?
____107.6x2 + 5x + 1
a. / (3x – 1)(2x – 1) / c. / (3x – 1)(2x + 1)b. / (3x + 1)(2x – 1) / d. / (3x + 1)(2x + 1)
____108.10x2 + 31x + 15
a. / (5x – 3)(2x + 5) / c. / (5x – 3)(2x – 5)b. / (5x + 3)(2x + 5) / d. / (5x + 3)(2x – 5)
____109.8x2 + 18x + 9
a. / (2x + 3)(4x + 3) / c. / (2x – 3)(4x + 3)b. / (2x – 3)(4x – 3) / d. / (2x + 3)(4x – 3)
____110.15x2 – 16xy + 4y2
a. / (3x – 2y)(5x + 2y) / c. / (3x + 2y)(5x – 2y)b. / (3x – 2y)(5x – 2y) / d. / (3x + 2y)(5x + 2y)
What is the factored form of the expression?
____111.12d2 + 4d – 1
a. / (6d + 1)(2d + 1) / c. / (6d – 1)(2d + 1)b. / (6d – 1)(2d – 1) / d. / (6d + 1)(2d – 1)
____112.24g2 – gh – 10h2
a. / (3g – 2h)(8g + 5h) / c. / (3g + 2)(8g + 5h2)b. / (3g – 2)(8g + 5) / d. / (3g + 2h)(8g – 5h)
____113.The area of a rectangular barnyard is given by the trinomial 4x2 + 8x – 21. What are the possible dimensions of the barnyard? Use factoring.
a. / – 2x + 7and –2x + 3 / c. / 2x – 2and2x – 3b. / 2x – 7 and 2x + 3 / d. / 2x + 7and2x – 3
What is the factored form of the expression?
____114.
a. / 2(5x – 2)(2x + 3) / c. / (10x – 2)(4x + 3)b. / 2(5x + 2)(2x – 3) / d. / 2(5x + 4)(2x – 3)
____115.80y2 – 210y – 245
a. / (2y + 7)(8y – 7) / c. / 5(2y – 7)(8y + 7)b. / 5(2y + 7)(8y + 7) / d. / (2y – 7)(40y + 35)
____116.Suppose that the area of a square lawn is . What is the length of one side of the lawn?
a. / / c. /b. / / d. /
____117.Find the radius of a circle with an area of .
a. / 3x – 4 / b. / 9x – 16 / c. / 16x + 9 / d. / 4x + 3What is the factored form of the expression?
____118.r2 – 49
a. / (r – 7)(r + 7) / c. / (r – 7)(r – 7)b. / (r + 7)(r + 7) / d. / (r – 7)(r + 9)
____119.s2 – 81
a. / (s – 9)(s – 9) / c. / (s – 9)(s + 9)b. / (s – 9)(s + 11) / d. / (s + 9)(s + 9)
____120.s4 – 16
a. / / c. /b. / / d. /
What is the factored form of the expression?
____121.4x2 – 81y2
a. / (2x + 9)(2x – 9) / c. / (2x + 9y)2b. / (2x + 9y)(2x – 9y) / d. / (2x – 9y)2
____122.100b2 – 81
a. / (10b + 9)(10b – 9) / c. / (10b – 9)(10b – 9)b. / (10b + 9)(10b + 9) / d. / (9b + 10)(9b – 10)
What is the factored form of the expression?
____123.3x3 + 3x2 + x + 1
a. / x(3x2 + x + 1) / c. / 3x2(x + 1)b. / (x + 3)(3x2 – 1) / d. / (x + 1)(3x2 + 1)
____124.15g3 + 18g2 – 10g – 12
a. / (3g2 – 6)(5g + 2) / c. / (3g2 + 2)(5g – 6)b. / (3g2 + 6)(5g – 2) / d. / (3g2 – 2)(5g + 6)
____125.Find the GCF of the first two terms and the GCF of the last two terms of the polynomial.
5h3 + 20h2 + 4h + 16
a. / 5h2, 16 / b. / 5h3, 4 / c. / 5h2, 4 / d. / h2, hWhat is the factored form of the expression? Factor completely.
____126.6x4 – 9x3 – 36x2 + 54x
a. / 3x(x2 – 6)(2x – 3) / c. / 6x(x2 – 6)(2x – 3)b. / 3x(x2 + 6)(2x + 3) / d. / 6x(x2 + 6)(2x + 3)
____127.56k3 – 84k2 + 70k – 105
a. / 7(4k2 – 5)(2k + 3) / c. / 7(4k2 + 5)(2k – 3)b. / (28k2 – 5)(14k + 3) / d. / (4k2 + 35)(2k – 21)
____128.
a. /axis of symmetry:
vertex: (2, –3) / c. /
axis of symmetry:
vertex: (–2, –3)
b. /
axis of symmetry:
vertex: (–2, 3) / d. /
axis of symmetry:
vertex: (2, 3)
____129.
a. /axis of symmetry:
vertex: (–0.5, –0.5) / c. /
axis of symmetry:
vertex: (0.5, 0.5)
b. /
axis of symmetry:
vertex: (0.5, –0.5) / d. /
axis of symmetry:
vertex: (0.5, 0.5)
____130.A ball is thrown into the air with an upward velocity of 48 ft/s. Its height h in feet after t seconds is given by the function . How long does it take the ball to reach its maximum height? What is the ball’s maximum height? Round to the nearest hundredth, if necessary.
a. / 1.5 s; 54 ft / b. / 1.5 s; 42 ft / c. / 3 s; 6 ft / d. / 1.5 s; 114 ft____131.A catapult launches a boulder with an upward velocity of 112 ft/s. The height of the boulder, h, in feet after t seconds is given by the function . How long does it take the boulder to reach its maximum height? What is the boulder’s maximum height? Round to the nearest hundredth, if necessary.
a. / 7 s; 30 ft / b. / 3.5 s; 366 ft / c. / 3.5 s; 618 ft / d. / 3.5 s; 226 ftSolve the equation using square roots.
____132.
a. / –3, 3 / c. /b. / –9, 9 / d. / no real number solutions
____133.
a. / –7, 7 / c. /b. / –49, 49 / d. / no real number solutions
____134.
a. / / c. / –2, 2b. / –4, 4 / d. / no real number solutions
____135.The area of a playground is 50 square yards. The length of the playground is 2 times longer than its width. Find the length and width of the playground.
a. / length = 10 yd, width = 5 yd / c. / length = 2.5 yd, width = 20 ydb. / length = 5 yd, width = 10 yd / d. / length = 20 yd, width = 2.5 yd
____136.
a. / –6, 6 / c. / 6, –6b. / 6, 6 / d. / –6, –6
____137.
a. / , –2 / c. / 3, –2b. / , 2 / d. / 3, 2
____138.
a. / / b. / / c. / / d. /____139.
a. / / b. / / c. / / d. /____140.
a. / , / b. / , / c. / , / d. / ,Algebra 1 (3rd Benchmark Review)
Answer Section
1.ANS:BPTS:1DIF:L2REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.hTOP:7-1 Problem 1 Simplifying Powers
2.ANS:DPTS:1DIF:L2REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.hTOP:7-1 Problem 1 Simplifying Powers
3.ANS:CPTS:1DIF:L3REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.hTOP:7-1 Problem 1 Simplifying Powers
4.ANS:DPTS:1DIF:L2REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h
TOP:7-1 Problem 2 Simplifying Exponential Expressions
5.ANS:APTS:1DIF:L3REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h
TOP:7-1 Problem 2 Simplifying Exponential Expressions
6.ANS:DPTS:1DIF:L3REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h
TOP:7-1 Problem 2 Simplifying Exponential Expressions
7.ANS:BPTS:1DIF:L2REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h
TOP:7-1 Problem 3 Evaluating an Exponential Expression
8.ANS:CPTS:1DIF:L3REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h
TOP:7-1 Problem 3 Evaluating an Exponential Expression
9.ANS:CPTS:1DIF:L3REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h
TOP:7-1 Problem 3 Evaluating an Exponential Expression
10.ANS:APTS:1DIF:L3REF:7-1 Zero and Negative Exponents
OBJ:7-1.1 To simplify expressions involving zero and negative exponents
NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h
TOP:7-1 Problem 4 Using an Exponential Expression
11.ANS:DPTS:1DIF:L2
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.hTOP:7-2 Problem 1 Multiplying Powers
12.ANS:BPTS:1DIF:L3
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.hTOP:7-2 Problem 1 Multiplying Powers
13.ANS:APTS:1DIF:L4
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.hTOP:7-2 Problem 1 Multiplying Powers
14.ANS:APTS:1DIF:L3
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.hTOP:7-2 Problem 1 Multiplying Powers
15.ANS:APTS:1DIF:L2
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-2 Problem 2 Multiplying Powers in Algebraic Expressions
16.ANS:APTS:1DIF:L3
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-2 Problem 2 Multiplying Powers in Algebraic Expressions
17.ANS:DPTS:1DIF:L4
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-2 Problem 2 Multiplying Powers in Algebraic Expressions
18.ANS:BPTS:1DIF:L4
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-2 Problem 2 Multiplying Powers in Algebraic Expressions
19.ANS:BPTS:1DIF:L2
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-2 Problem 4 Simplifying Expressions with Rational Exponents
KEY:rational exponents
20.ANS:BPTS:1DIF:L2
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-2 Problem 5 Simplifying Expressions with Rational Exponents
KEY:rational exponents
21.ANS:APTS:1DIF:L3
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-2 Problem 6 Simplifying Expressions With Rational Exponents
KEY:rational exponents
22.ANS:APTS:1DIF:L2
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.1 To raise a power to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 1 Simplifying a Power Raised to a Power
23.ANS:CPTS:1DIF:L3
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.1 To raise a power to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 2 Simplifying an Expression With PowersKEY:rational exponents
24.ANS:DPTS:1DIF:L3
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.1 To raise a power to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 1 Simplifying a Power Raised to a Power
25.ANS:BPTS:1DIF:L4
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.1 To raise a power to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 2 Simplifying an Expression With PowersKEY:rational exponents
26.ANS:APTS:1DIF:L3
REF:7-2 Multiplying Powers With the Same Base
OBJ:7-2.1 To multiply powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-2 Problem 6 Simplifying Expressions With Rational Exponents
KEY:rational exponents
27.ANS:DPTS:1DIF:L3
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 3 Simplifying a Product Raised to a Power
28.ANS:DPTS:1DIF:L3
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 3 Simplifying a Product Raised to a Power
29.ANS:CPTS:1DIF:L3
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 3 Simplifying a Product Raised to a Power
30.ANS:APTS:1DIF:L3
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 3 Simplifying a Product Raised to a PowerKEY:rational exponents
31.ANS:CPTS:1DIF:L4
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 4 Simplifying an Expression With Products
32.ANS:APTS:1DIF:L4
REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-3 Problem 4 Simplifying an Expression With Products
33.ANS:DPTS:1DIF:L2
REF:7-4 Division Properties of Exponents
OBJ:7-4.1 To divide powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 1 Dividing Algebraic Expressions
34.ANS:CPTS:1DIF:L3
REF:7-4 Division Properties of Exponents
OBJ:7-4.1 To divide powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 1 Dividing Algebraic Expressions
35.ANS:APTS:1DIF:L3
REF:7-4 Division Properties of Exponents
OBJ:7-4.1 To divide powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 1 Dividing Algebraic ExpressionsKEY:rational exponents
36.ANS:CPTS:1DIF:L3
REF:7-4 Division Properties of Exponents
OBJ:7-4.1 To divide powers with the same base
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 1 Dividing Algebraic Expressions
37.ANS:BPTS:1DIF:L2
REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 3 Raising a Quotient to a Power
38.ANS:CPTS:1DIF:L3
REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 3 Raising a Quotient to a Power
39.ANS:BPTS:1DIF:L3
REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 3 Raising a Quotient to a Power
40.ANS:BPTS:1DIF:L4
REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 4 Simplifying an Exponential Expression
41.ANS:BPTS:1DIF:L3
REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 4 Simplifying an Exponential Expression
42.ANS:BPTS:1DIF:L3
REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power
NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h
TOP:7-4 Problem 4 Simplifying an Exponential Expression
43.ANS:BPTS:1DIF:L3
REF:7-5 Rational Exponents and Radicals
OBJ:7-5.1 To rewrite expressions involving radicals and rational exponents
NAT:CC N.RN.2TOP:7-5 Problem 4 Using a Radical Expression
KEY:index | root | radical expression | rational exponents | radical form
44.ANS:BPTS:1DIF:L2REF:7-6 Exponential Functions
OBJ:7-6.1 To evaluate and graph exponential functions
NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 1 Identifying Linear and Exponential Functions
KEY:exponential function
45.ANS:APTS:1DIF:L2REF:7-6 Exponential Functions
OBJ:7-6.1 To evaluate and graph exponential functions
NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 1 Identifying Linear and Exponential Functions
KEY:exponential function
46.ANS:DPTS:1DIF:L3REF:7-6 Exponential Functions
OBJ:7-6.1 To evaluate and graph exponential functions
NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 2 Evaluating an Exponential Function
KEY:exponential function
47.ANS:BPTS:1DIF:L3REF:7-6 Exponential Functions
OBJ:7-6.1 To evaluate and graph exponential functions
NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 2 Evaluating an Exponential Function
KEY:exponential function
48.ANS:BPTS:1DIF:L3REF:7-6 Exponential Functions
OBJ:7-6.1 To evaluate and graph exponential functions
NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 3 Graphing an Exponential Function
KEY:exponential function
49.ANS:DPTS:1DIF:L3REF:7-6 Exponential Functions
OBJ:7-6.1 To evaluate and graph exponential functions
NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 3 Graphing an Exponential Function
KEY:exponential function
50.ANS:APTS:1DIF:L4REF:7-6 Exponential Functions
OBJ:7-6.1 To evaluate and graph exponential functions
NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 3 Graphing an Exponential Function
KEY:exponential function
51.ANS:BPTS:1DIF:L4REF:7-7 Exponential Growth and Decay
OBJ:7-7.1 To model exponential growth and decay
NAT:CC A.SSE.1.b| CC A.SSE.3.c| CC A.CED.2| CC F.IF.4| CC F.IF.8.b| CC F.BF.3| CC F.LE.1.c| CC F.LE.5| A.2.g| A.3.h| A.4.c TOP: 7-7 Problem 1 Modeling Exponential Growth
KEY:exponential growth | growth factor
52.ANS:BPTS:1DIF:L4REF:7-7 Exponential Growth and Decay
OBJ:7-7.1 To model exponential growth and decay
NAT:CC A.SSE.1.b| CC A.SSE.3.c| CC A.CED.2| CC F.IF.4| CC F.IF.8.b| CC F.BF.3| CC F.LE.1.c| CC F.LE.5| A.2.g| A.3.h| A.4.c TOP: 7-7 Problem 1 Modeling Exponential Growth
KEY:exponential growth | growth factor
53.ANS:CPTS:1DIF:L3REF:7-7 Exponential Growth and Decay
OBJ:7-7.1 To model exponential growth and decay
NAT:CC A.SSE.1.b| CC A.SSE.3.c| CC A.CED.2| CC F.IF.4| CC F.IF.8.b| CC F.BF.3| CC F.LE.1.c| CC F.LE.5| A.2.g| A.3.h| A.4.c TOP: 7-7 Problem 3 Modeling Exponential Decay
KEY:exponential decay | decay factor
54.ANS:DPTS:1DIF:L3REF:7-7 Exponential Growth and Decay
OBJ:7-7.1 To model exponential growth and decay
NAT:CC A.SSE.1.b| CC A.SSE.3.c| CC A.CED.2| CC F.IF.4| CC F.IF.8.b| CC F.BF.3| CC F.LE.1.c| CC F.LE.5| A.2.g| A.3.h| A.4.c TOP: 7-7 Problem 3 Modeling Exponential Decay
KEY:exponential decay | decay factor
55.ANS:APTS:1DIF:L2REF:7-8 Geometric Sequences
OBJ:7-8.1 To write and use recursive formulas for geometric sequences
NAT:CC A.SSE.1.a| CC F.IF.3| CC F.BF.1.a| CC F.BF.2| CC F.LE.2
TOP:7-8 Problem 1 Identifying Geometric SequencesKEY:geometric sequence | common ratio
56.ANS:
An exponential function; the common ratio is 4 and the function is .
PTS:1DIF:L2REF:7-6 Exponential Functions
OBJ:7-6.1 To evaluate and graph exponential functions
NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 1 Identifying Linear and Exponential Functions
KEY:exponential function
57.ANS:BPTS:1DIF:L3
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 1 Finding the Degree of a MonomialKEY:monomial | degree of a monomial
58.ANS:BPTS:1DIF:L3
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 1 Finding the Degree of a MonomialKEY:monomial | degree of a monomial
59.ANS:CPTS:1DIF:L2
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 1 Finding the Degree of a MonomialKEY:monomial | degree of a monomial
60.ANS:BPTS:1DIF:L2
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 1 Finding the Degree of a MonomialKEY:monomial | degree of a monomial
61.ANS:APTS:1DIF:L3
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 2 Adding and Subtracting MonomialsKEY:monomial | degree of a monomial
62.ANS:DPTS:1DIF:L3
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 2 Adding and Subtracting MonomialsKEY:monomial | degree of a monomial
63.ANS:BPTS:1DIF:L3
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 2 Adding and Subtracting MonomialsKEY:monomial | degree of a monomial
64.ANS:APTS:1DIF:L3
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 3 Classifying Polynomials
KEY:monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | trinomial
65.ANS:CPTS:1DIF:L3
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 3 Classifying Polynomials
KEY:monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | trinomial
66.ANS:CPTS:1DIF:L2
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 3 Classifying Polynomials
KEY:monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | binomial | trinomial
67.ANS:CPTS:1DIF:L4
REF:8-1 Adding and Subtracting Polynomials
OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e
TOP:8-1 Problem 4 Adding Polynomials
KEY:polynomial | trinomial | standard form of a polynomial