Algebra 1 (3rd Benchmark Review)

What is the simplified form of each expression?

____1.

a. / –1 / b. / 1 / c. / –4.2 / d. / 0

____2.

a. / / b. / / c. / / d. /

____3.

a. / / b. / 9 / c. / / d. / 6

____4.

a. / / b. / / c. / / d. /

____5.

a. / / b. / / c. / / d. /

____6.

a. / / b. / / c. / / d. /

____7.What is the value of for x = 3 and y = –1?

a. / / b. / / c. / –108 / d. /

____8.What is the value of for x = 2 and y = –4?

a. / 16 / b. / –4 / c. / / d. / –16

____9.What is the value of for x = 2 and y = –4?

a. / / b. / 128 / c. / / d. /

____10.Suppose that the amount of algae in a pond doubles every 4 hours. If the pond initially contains 40 pounds of algae, how much algae will be in the pond after 12 hours?

a. / 320 pounds / c. / 640 pounds
b. / 160 pounds / d. / 64 pounds

What is each expression written using each base only once?

____11.

a. / / b. / / c. / / d. /

____12.

a. / 8 / b. / 1 / c. / 0 / d. / 7.578

____13.

a. / –5 / b. / 511 / c. / 1 / d. / 11

____14.

a. / / b. / / c. / / d. /

What is the simplified form of each expression?

____15.

a. / / b. / / c. / / d. /

____16.

a. / / b. / / c. / / d. /

____17.

a. / / b. / / c. / / d. /

____18.

a. / / b. / / c. / / d. /

Simplify the expression.

____19.

a. / 45 / c. / 18
b. / 243 / d. / 9

____20.

a. / / b. / / c. / / d. /

____21.

a. / 4 / c. / 256
b. / / d. / 1024

____22.

a. / / b. / / c. / / d. /

____23.

a. / / b. / / c. / / d. /

____24.

a. / / b. / / c. / / d. /

____25.

a. / / b. / / c. / / d. /

____26.

a. / / c. /
b. / / d. /

____27.

a. / / b. / / c. / / d. /

____28.

a. / / b. / / c. / / d. /

____29.

a. / / b. / / c. / / d. /

____30.

a. / / b. / / c. / / d. /

____31.

a. / / b. / / c. / / d. /

____32.

a. / / b. / / c. / / d. /

____33.

a. / / b. / / c. / / d. /

____34.

a. / / b. / / c. / / d. /

____35.

a. / / b. / / c. / / d. /

____36.

a. / / b. / / c. / / d. /

____37.

a. / / b. / / c. / / d. /

____38.

a. / / b. / / c. / / d. /

____39.

a. / / b. / / c. / / d. /

____40.

a. / / b. / / c. / / d. /

____41.

a. / / b. / / c. / / d. /

____42.

a. / / b. / / c. / / d. /

____43.Kepler’s Third Law of Orbital Motion states that you can approximate the period P (in Earth years) it takes a planet to complete one orbit of the sun using the function , where d is the distance (in astronomical units, AU) from the planet to the sun. How many Earth years would it take for a planet that is 6.76 AU from the sun?

a. / 15.23 / c. / 154.46
b. / 17.58 / d. / 3.58

____44.Does the table represent a linear or an exponential function?

x / 1 / 2 / 3 / 4
y / 8 / 11 / 14 / 17
a. / exponential / b. / linear

____45.Does the rule represent a linear or an exponential function?

a. / exponential / b. / linear

____46.Suppose a population of 40 crickets doubles in size every month. The function gives the population after x months. How many crickets will there be after 3 years?

a. / 2,880 crickets / c. / 320 crickets
b. / 240 crickets / d. / 2,748,779,069,440 crickets

____47.Suppose an investment of $3,800 doubles in value every decade. The function gives the value of the investment after x decades. How much is the investment worth after 2 decades?

a. / $152,000 / c. / $76,000
b. / $15,200 / d. / $15,200

What is the graph of the function?

____48.

a. / / c. /
b. / / d. /

____49.

a. / / c. /
b. / / d. /

____50.

a. / / c. /
b. / / d. /

____51.Suppose the population of a town is 8,600 and is growing 3% each year. Predict the population after 3 years.

a. / about 77,400 people
b. / about 9,397 people
c. / about 26574 people
d. / about 232,200 people

____52.Suppose that the population of deer in a state is 1,500 and is growing 2% each year. Predict the population after 4 years.

a. / about 12,000 deer
b. / about 1,624 deer
c. / about 3,110 deer
d. / about 24,000 deer

____53.A population of 1,750 cheetahs decreases by 11% per year. How many cheetahs will there be in the population after 10 years? Round your answer to the nearest whole number.

a. / 4969 / b. / 486 / c. / 546 / d. / 1640

____54.A tractor costs $12,250 and depreciates in value by 6% per year. How much will the tractor be worth after 6 years?

a. / $7,943.85 / b. / $12,214.00 / c. / $17,376.86 / d. / $8,450.90

____55.Is the sequence geometric? If so, identify the common ratio.

6, 12, 24, 48, ...

a. / yes; 2 / b. / yes; –2 / c. / yes; 4 / d. / no

56.Does the table represent a linear or an exponential function? Explain.

x / 1 / 2 / 3 / 4
y / 16 / 64 / 256 / 1024

What is the degree of each monomial?

____57.7m6n5

a. / 5 / b. / 11 / c. / 6 / d. / 7

____58.5x6y3

a. / 6 / b. / 9 / c. / 5 / d. / 3

____59.5x7

a. / 5 / b. / 35 / c. / 7 / d. / 12

____60.–9

a. / –8 / b. / 0 / c. / –10 / d. / –9

What is the sum or difference?

____61.6x7 + 8x7

a. / 14x7 / b. / –2x7 / c. / 14x14 / d. / 48x7

____62.2x7 – 8x7

a. / –6x14 / b. / 10x7 / c. / –16x7 / d. / –6x7

____63.2y5 – 4y5

a. / –2y10 / b. / –2y5 / c. / –8y5 / d. / 6y5

Write the polynomial in standard form. Then name the polynomial based on its degree and number of terms.

____64.2 – 11x2 – 8x + 6x2

a. / –5x2 – 8x + 2; quadratic trinomial
b. / –5x2 – 8x; quadratic binomial
c. / –6x2 – 8x – 2; cubic polynomial
d. / 6x2 – 8x + 2; cubic trinomial

____65.4g – 5g3 + 9g2 – 6

a. / 5g3 – 9g2 + 4g – 6; cubic trinomial
b. / 9g3 – 5g2 + 4g – 6; quadratic binomial
c. / –5g3 + 9g2 + 4g – 6; cubic polynomial
d. / –6 + 4g + 9g2 – 5g3 ; cubic binomial

____66.3x + 2x2 – 6

a. / 3x – 6 + 2x2; not a polynomial
b. / 3x + 2x2 – 6; cubic monomial
c. / 2x2 + 3x – 6; quadratic trinomial
d. / 2x2 + 3x – 6; fourth-degree binomial

____67.A biologist studied the populations of white-sided jackrabbits and black-tailed jackrabbits over a 5-year period. The biologist modeled the populations, in thousands, with the following polynomials where x is time, in years.

White-sided jackrabbits:

Black-tailed jackrabbits:

What polynomial models the total number of white-sided and black-tailed jackrabbits?

a. / / c. /
b. / / d. /

Simplify the sum.

____68.(2u3 + 6u2 + 3) + (2u3 – 7u + 6)

a. / 9 – 7u + 6u2+ 4u3 / c. / 0u3 – 7u2 + 6u – 9
b. / 0u3 + 6u2 – 7u + 9 / d. / 4u3 + 6u2 – 7u + 9

Simplify the difference.

____69.(–7x – 5x4 + 5) – (–7x4 – 5 – 9x)

a. / 2x4 + 2x + 8 / c. / –14x4 – 10x + 10
b. / –14x4 + 10x + 10 / d. / 2x4 + 2x + 10

____70.(4w2 – 7w – 6) – (8w2 + 2w – 3)

a. / –4w2 – 9w – 3 / c. / –4w2 – 5w – 9
b. / 12w2 + 9w + 3 / d. / 12w2 – 5w – 9

Simplify the product.

____71.2n(n2 + 3n + 4)

a. / 2n3 + 6n2 + 8n / c. / 2n3 + 6n + 8
b. / 2n3 + 3n + 4 / d. / n2 + 5n + 4

____72.5a2(3a4 + 3b + 2)

a. / 8a4 + 8ab + 5a2 / c. / 15a6 + 15a2b + 10a2
b. / 15a8 + 3b+ 10a2 / d. / 8a6 + 15a2b + 5a2

____73.8p(–3p2 + 6p – 2)

a. / –5p3 + 14p2 – 6p / c. / 14p2 – 6p – 5p3
b. / 48p2 – 16p – 24p3 / d. / –24p3 + 48p2 – 16p

Find the GCF of the terms of the polynomial.

____74.26x2 + 34x4

a. / x2 / b. / 26x2 / c. / 2x4 / d. / 2x2

____75.48x6 + 6x2– 26x3

a. / 6x2 / b. / x2 / c. / 2x2 / d. / 2x6

Factor the polynomial.

____76.

a. / 2x(x2 + 2x + 4) / c. / 2x(x2 + 2x + 8)
b. / 2x(x + 2)(x + 4) / d. / 2x3 + 4x2 + 8x

____77.25w6 + 35w3

a. / 5w2(5w4 + 7w) / c. / w3(25w3 + 35)
b. / 5w3(5w3 + 7) / d. / 5(5w6 + 7w3)

____78.54c3d4 + 9c4d2

a. / 9c3d2(d2 + 6c) / c. / 9c4d2(d2 + 6)
b. / 9c3d2(6d2 + c) / d. / 9c4d2(6d2 + 1)

____79.A sports team is building a new stadium on a rectangular lot of land. If the lot measures 7x by 7x and the sports field will be 5x by 5x, how much of the lot will be left over to build bleachers on?

a. / / c. /
b. / / d. /

Simplify the product using the distributive property.

____80.

a. / / c. /
b. / / d. /

____81.

a. / / c. /
b. / / d. /

Simplify the product using a table.

____82.

/ –3
–5
a. / / c. /
b. / / d. /

____83.

/ –5
4
a. / / c. /
b. / / d. /

Simplify the product using FOIL.

____84.(3x – 7)(3x – 5)

a. / 9x2 + 6x + 35 / c. / 9x2 – 36x – 35
b. / 9x2 + 36x + 35 / d. / 9x2 – 36x + 35

____85.

a. / / c. /
b. / / d. /

____86.A cylinder has a radius of 5x + 3 and a height of 4x + 2. Which polynomial in standard form best describes the total volume of the cylinder? Use the formula for the volume of a cylinder.

a. / / c. /
b. / / d. /

____87.A sphere has a radius of 2x + 5. Which polynomial in standard form best describes the total surface area of the sphere? Use the formula for the surface area of a sphere.

a. / / c. /
b. / / d. /

What is a simpler form of the expression?

____88.(2n2 + 5n + 3)(4n – 5)

a. / 8n3 + 10n2 – 13n – 15 / c. / 8n3 – 10n2 + 37n – 15
b. / 8n3 + 30n2 – 37n – 15 / d. / 8n3 + 13n2 – 10n – 15

____89.(4k + 5)(3k2 – 4k – 4)

a. / 12k3 – k2 – 36k – 20 / c. / 12k3 – k2 + 4k – 20
b. / 12k3 + 31k2 – 4k – 20 / d. / 12k3 + 36k2 – k – 20

What is a simpler form of each product?

____90.(2x – 6)2

a. / 4x2 – 24x + 36 / c. / 4x2 + 36
b. / 4x2 – 8x + 36 / d. / 4x2 – 12x + 36

____91.(4x – 6y3)2

a. / 16x2 – 24xy3 + 36y6 / c. / 16x2 + 36y6
b. / 16x2 – 48xy3 + 36y6 / d. / 16x2 – 4xy3 + 36y6

____92.A machinist creates a washer by drilling a hole through the center of a circular piece of metal. If the piece of metal has a radius of x + 10 and the hole has a radius of x + 6, what is the area of the washer?

a. / / c. /
b. / / d. /

What is a simpler form of the following expressions?

____93.(j + 7)(j – 7)

a. / j2 + 14j – 49 / c. / j2 + 14j – 49
b. / j2 – 14j – 49 / d. / j2 – 49

____94.(2n + 2)(2n – 2)

a. / 4n2 – 4 / c. / 4n2 + 2n – 4
b. / 4n2 – 4n – 4 / d. / 4n2 + 4n – 4

____95.(4p – 8)(4p + 8)

a. / 16p2 + 64p + 64 / c. / 16p2 – 64
b. / 16p2 – 64p – 64 / d. / 16p2 + 64

____96.(7m2 – 5)(7m2 + 5)

a. / 49m4 – 25 / c. / 49m2 – 25
b. / 49m3 – 25 / d. / 49m4 + 25

What is the factored form of the following expressions?

____97.w2 + 18w + 77

a. / (w – 7)(w + 11) / c. / (w + 7)(w + 11)
b. / (w – 7)(w – 11) / d. / (w + 1)(w + 77)

____98.d2 + 16d + 63

a. / (d – 7)(d – 9) / c. / (d + 7)(d + 9)
b. / (d + 7)(d – 9) / d. / (d – 7)(d + 9)

____99.d2 – 19d + 90

a. / (d + 10)(d + 9) / c. / (d – 10)(d + 9)
b. / (d – 10)(d – 9) / d. / (d + 10)(d – 9)

____100.x2 – x – 42

a. / (x – 7)(x + 6) / c. / (x + 7)(x – 6)
b. / (x + 7)(x + 6) / d. / (x – 7)(x – 6)

____101.d2 – 14d + 45

a. / (d + 9)(d + 5) / c. / (d – 9)(d + 5)
b. / (d + 9)(d – 5) / d. / (d – 9)(d – 5)

____102.d2 + 2d – 48

a. / (d + 6)(d + 8) / c. / (d – 6)(d + 8)
b. / (d + 6)(d – 8) / d. / (d – 6)(d – 8)

____103.The area of a rectangular garden is given by the trinomial x2 + x – 42. What are the possible dimensions of the rectangle? Use factoring.

a. / x – 6and x + 7 / c. / x – 6and x – 7
b. / x + 6 and x – 7 / d. / x + 6and x + 7

____104.The area of a rectangular painting is given by the trinomial x2 + 4x – 60. What are the possible dimensions of the painting? Use factoring.

a. / x – 6and x + 10 / c. / x – 6and x – 10
b. / x + 6 and x – 10 / d. / x + 6and x + 10

What is the factored form of the following expressions?

____105.x2 – 10xy + 24y2

a. / (x + 6y)(x + 4y) / c. / (x + 2y)(x – 12y)
b. / (x – 2y)(x + 12y) / d. / (x – 6y)(x – 4y)

____106.x2 – 6xy – 40y2

a. / (x – 4y)(x + 10y) / c. / (x – 4y)(x – 10y)
b. / (x + 4y)(x – 10y) / d. / (x + 4y)(x + 10y)

What is the factored form of the expression?

____107.6x2 + 5x + 1

a. / (3x – 1)(2x – 1) / c. / (3x – 1)(2x + 1)
b. / (3x + 1)(2x – 1) / d. / (3x + 1)(2x + 1)

____108.10x2 + 31x + 15

a. / (5x – 3)(2x + 5) / c. / (5x – 3)(2x – 5)
b. / (5x + 3)(2x + 5) / d. / (5x + 3)(2x – 5)

____109.8x2 + 18x + 9

a. / (2x + 3)(4x + 3) / c. / (2x – 3)(4x + 3)
b. / (2x – 3)(4x – 3) / d. / (2x + 3)(4x – 3)

____110.15x2 – 16xy + 4y2

a. / (3x – 2y)(5x + 2y) / c. / (3x + 2y)(5x – 2y)
b. / (3x – 2y)(5x – 2y) / d. / (3x + 2y)(5x + 2y)

What is the factored form of the expression?

____111.12d2 + 4d – 1

a. / (6d + 1)(2d + 1) / c. / (6d – 1)(2d + 1)
b. / (6d – 1)(2d – 1) / d. / (6d + 1)(2d – 1)

____112.24g2 – gh – 10h2

a. / (3g – 2h)(8g + 5h) / c. / (3g + 2)(8g + 5h2)
b. / (3g – 2)(8g + 5) / d. / (3g + 2h)(8g – 5h)

____113.The area of a rectangular barnyard is given by the trinomial 4x2 + 8x – 21. What are the possible dimensions of the barnyard? Use factoring.

a. / – 2x + 7and –2x + 3 / c. / 2x – 2and2x – 3
b. / 2x – 7 and 2x + 3 / d. / 2x + 7and2x – 3

What is the factored form of the expression?

____114.

a. / 2(5x – 2)(2x + 3) / c. / (10x – 2)(4x + 3)
b. / 2(5x + 2)(2x – 3) / d. / 2(5x + 4)(2x – 3)

____115.80y2 – 210y – 245

a. / (2y + 7)(8y – 7) / c. / 5(2y – 7)(8y + 7)
b. / 5(2y + 7)(8y + 7) / d. / (2y – 7)(40y + 35)

____116.Suppose that the area of a square lawn is . What is the length of one side of the lawn?

a. / / c. /
b. / / d. /

____117.Find the radius of a circle with an area of .

a. / 3x – 4 / b. / 9x – 16 / c. / 16x + 9 / d. / 4x + 3

What is the factored form of the expression?

____118.r2 – 49

a. / (r – 7)(r + 7) / c. / (r – 7)(r – 7)
b. / (r + 7)(r + 7) / d. / (r – 7)(r + 9)

____119.s2 – 81

a. / (s – 9)(s – 9) / c. / (s – 9)(s + 9)
b. / (s – 9)(s + 11) / d. / (s + 9)(s + 9)

____120.s4 – 16

a. / / c. /
b. / / d. /

What is the factored form of the expression?

____121.4x2 – 81y2

a. / (2x + 9)(2x – 9) / c. / (2x + 9y)2
b. / (2x + 9y)(2x – 9y) / d. / (2x – 9y)2

____122.100b2 – 81

a. / (10b + 9)(10b – 9) / c. / (10b – 9)(10b – 9)
b. / (10b + 9)(10b + 9) / d. / (9b + 10)(9b – 10)

What is the factored form of the expression?

____123.3x3 + 3x2 + x + 1

a. / x(3x2 + x + 1) / c. / 3x2(x + 1)
b. / (x + 3)(3x2 – 1) / d. / (x + 1)(3x2 + 1)

____124.15g3 + 18g2 – 10g – 12

a. / (3g2 – 6)(5g + 2) / c. / (3g2 + 2)(5g – 6)
b. / (3g2 + 6)(5g – 2) / d. / (3g2 – 2)(5g + 6)

____125.Find the GCF of the first two terms and the GCF of the last two terms of the polynomial.

5h3 + 20h2 + 4h + 16

a. / 5h2, 16 / b. / 5h3, 4 / c. / 5h2, 4 / d. / h2, h

What is the factored form of the expression? Factor completely.

____126.6x4 – 9x3 – 36x2 + 54x

a. / 3x(x2 – 6)(2x – 3) / c. / 6x(x2 – 6)(2x – 3)
b. / 3x(x2 + 6)(2x + 3) / d. / 6x(x2 + 6)(2x + 3)

____127.56k3 – 84k2 + 70k – 105

a. / 7(4k2 – 5)(2k + 3) / c. / 7(4k2 + 5)(2k – 3)
b. / (28k2 – 5)(14k + 3) / d. / (4k2 + 35)(2k – 21)

____128.

a. /
axis of symmetry:
vertex: (2, –3) / c. /
axis of symmetry:
vertex: (–2, –3)
b. /
axis of symmetry:
vertex: (–2, 3) / d. /
axis of symmetry:
vertex: (2, 3)

____129.

a. /
axis of symmetry:
vertex: (–0.5, –0.5) / c. /
axis of symmetry:
vertex: (0.5, 0.5)
b. /
axis of symmetry:
vertex: (0.5, –0.5) / d. /
axis of symmetry:
vertex: (0.5, 0.5)

____130.A ball is thrown into the air with an upward velocity of 48 ft/s. Its height h in feet after t seconds is given by the function . How long does it take the ball to reach its maximum height? What is the ball’s maximum height? Round to the nearest hundredth, if necessary.

a. / 1.5 s; 54 ft / b. / 1.5 s; 42 ft / c. / 3 s; 6 ft / d. / 1.5 s; 114 ft

____131.A catapult launches a boulder with an upward velocity of 112 ft/s. The height of the boulder, h, in feet after t seconds is given by the function . How long does it take the boulder to reach its maximum height? What is the boulder’s maximum height? Round to the nearest hundredth, if necessary.

a. / 7 s; 30 ft / b. / 3.5 s; 366 ft / c. / 3.5 s; 618 ft / d. / 3.5 s; 226 ft

Solve the equation using square roots.

____132.

a. / –3, 3 / c. /
b. / –9, 9 / d. / no real number solutions

____133.

a. / –7, 7 / c. /
b. / –49, 49 / d. / no real number solutions

____134.

a. / / c. / –2, 2
b. / –4, 4 / d. / no real number solutions

____135.The area of a playground is 50 square yards. The length of the playground is 2 times longer than its width. Find the length and width of the playground.

a. / length = 10 yd, width = 5 yd / c. / length = 2.5 yd, width = 20 yd
b. / length = 5 yd, width = 10 yd / d. / length = 20 yd, width = 2.5 yd

____136.

a. / –6, 6 / c. / 6, –6
b. / 6, 6 / d. / –6, –6

____137.

a. / , –2 / c. / 3, –2
b. / , 2 / d. / 3, 2

____138.

a. / / b. / / c. / / d. /

____139.

a. / / b. / / c. / / d. /

____140.

a. / , / b. / , / c. / , / d. / ,

Algebra 1 (3rd Benchmark Review)

Answer Section

1.ANS:BPTS:1DIF:L2REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.hTOP:7-1 Problem 1 Simplifying Powers

2.ANS:DPTS:1DIF:L2REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.hTOP:7-1 Problem 1 Simplifying Powers

3.ANS:CPTS:1DIF:L3REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.hTOP:7-1 Problem 1 Simplifying Powers

4.ANS:DPTS:1DIF:L2REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h

TOP:7-1 Problem 2 Simplifying Exponential Expressions

5.ANS:APTS:1DIF:L3REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h

TOP:7-1 Problem 2 Simplifying Exponential Expressions

6.ANS:DPTS:1DIF:L3REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h

TOP:7-1 Problem 2 Simplifying Exponential Expressions

7.ANS:BPTS:1DIF:L2REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h

TOP:7-1 Problem 3 Evaluating an Exponential Expression

8.ANS:CPTS:1DIF:L3REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h

TOP:7-1 Problem 3 Evaluating an Exponential Expression

9.ANS:CPTS:1DIF:L3REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h

TOP:7-1 Problem 3 Evaluating an Exponential Expression

10.ANS:APTS:1DIF:L3REF:7-1 Zero and Negative Exponents

OBJ:7-1.1 To simplify expressions involving zero and negative exponents

NAT:CC N.RN.1| CC N.RN.2| N.1.d| N.3.a| A.3.c| A.3.h

TOP:7-1 Problem 4 Using an Exponential Expression

11.ANS:DPTS:1DIF:L2

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.hTOP:7-2 Problem 1 Multiplying Powers

12.ANS:BPTS:1DIF:L3

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.hTOP:7-2 Problem 1 Multiplying Powers

13.ANS:APTS:1DIF:L4

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.hTOP:7-2 Problem 1 Multiplying Powers

14.ANS:APTS:1DIF:L3

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.hTOP:7-2 Problem 1 Multiplying Powers

15.ANS:APTS:1DIF:L2

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-2 Problem 2 Multiplying Powers in Algebraic Expressions

16.ANS:APTS:1DIF:L3

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-2 Problem 2 Multiplying Powers in Algebraic Expressions

17.ANS:DPTS:1DIF:L4

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-2 Problem 2 Multiplying Powers in Algebraic Expressions

18.ANS:BPTS:1DIF:L4

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-2 Problem 2 Multiplying Powers in Algebraic Expressions

19.ANS:BPTS:1DIF:L2

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-2 Problem 4 Simplifying Expressions with Rational Exponents

KEY:rational exponents

20.ANS:BPTS:1DIF:L2

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-2 Problem 5 Simplifying Expressions with Rational Exponents

KEY:rational exponents

21.ANS:APTS:1DIF:L3

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-2 Problem 6 Simplifying Expressions With Rational Exponents

KEY:rational exponents

22.ANS:APTS:1DIF:L2

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.1 To raise a power to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 1 Simplifying a Power Raised to a Power

23.ANS:CPTS:1DIF:L3

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.1 To raise a power to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 2 Simplifying an Expression With PowersKEY:rational exponents

24.ANS:DPTS:1DIF:L3

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.1 To raise a power to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 1 Simplifying a Power Raised to a Power

25.ANS:BPTS:1DIF:L4

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.1 To raise a power to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 2 Simplifying an Expression With PowersKEY:rational exponents

26.ANS:APTS:1DIF:L3

REF:7-2 Multiplying Powers With the Same Base

OBJ:7-2.1 To multiply powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-2 Problem 6 Simplifying Expressions With Rational Exponents

KEY:rational exponents

27.ANS:DPTS:1DIF:L3

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 3 Simplifying a Product Raised to a Power

28.ANS:DPTS:1DIF:L3

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 3 Simplifying a Product Raised to a Power

29.ANS:CPTS:1DIF:L3

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 3 Simplifying a Product Raised to a Power

30.ANS:APTS:1DIF:L3

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 3 Simplifying a Product Raised to a PowerKEY:rational exponents

31.ANS:CPTS:1DIF:L4

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 4 Simplifying an Expression With Products

32.ANS:APTS:1DIF:L4

REF:7-3 More Multiplication Properties of ExponentsOBJ:7-3.2 To raise a product to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-3 Problem 4 Simplifying an Expression With Products

33.ANS:DPTS:1DIF:L2

REF:7-4 Division Properties of Exponents

OBJ:7-4.1 To divide powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 1 Dividing Algebraic Expressions

34.ANS:CPTS:1DIF:L3

REF:7-4 Division Properties of Exponents

OBJ:7-4.1 To divide powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 1 Dividing Algebraic Expressions

35.ANS:APTS:1DIF:L3

REF:7-4 Division Properties of Exponents

OBJ:7-4.1 To divide powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 1 Dividing Algebraic ExpressionsKEY:rational exponents

36.ANS:CPTS:1DIF:L3

REF:7-4 Division Properties of Exponents

OBJ:7-4.1 To divide powers with the same base

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 1 Dividing Algebraic Expressions

37.ANS:BPTS:1DIF:L2

REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 3 Raising a Quotient to a Power

38.ANS:CPTS:1DIF:L3

REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 3 Raising a Quotient to a Power

39.ANS:BPTS:1DIF:L3

REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 3 Raising a Quotient to a Power

40.ANS:BPTS:1DIF:L4

REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 4 Simplifying an Exponential Expression

41.ANS:BPTS:1DIF:L3

REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 4 Simplifying an Exponential Expression

42.ANS:BPTS:1DIF:L3

REF:7-4 Division Properties of ExponentsOBJ:7-4.2 To raise a quotient to a power

NAT:CC N.RN.1| N.1.d| N.1.f| N.3.a| A.3.c| A.3.h

TOP:7-4 Problem 4 Simplifying an Exponential Expression

43.ANS:BPTS:1DIF:L3

REF:7-5 Rational Exponents and Radicals

OBJ:7-5.1 To rewrite expressions involving radicals and rational exponents

NAT:CC N.RN.2TOP:7-5 Problem 4 Using a Radical Expression

KEY:index | root | radical expression | rational exponents | radical form

44.ANS:BPTS:1DIF:L2REF:7-6 Exponential Functions

OBJ:7-6.1 To evaluate and graph exponential functions

NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 1 Identifying Linear and Exponential Functions

KEY:exponential function

45.ANS:APTS:1DIF:L2REF:7-6 Exponential Functions

OBJ:7-6.1 To evaluate and graph exponential functions

NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 1 Identifying Linear and Exponential Functions

KEY:exponential function

46.ANS:DPTS:1DIF:L3REF:7-6 Exponential Functions

OBJ:7-6.1 To evaluate and graph exponential functions

NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 2 Evaluating an Exponential Function

KEY:exponential function

47.ANS:BPTS:1DIF:L3REF:7-6 Exponential Functions

OBJ:7-6.1 To evaluate and graph exponential functions

NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 2 Evaluating an Exponential Function

KEY:exponential function

48.ANS:BPTS:1DIF:L3REF:7-6 Exponential Functions

OBJ:7-6.1 To evaluate and graph exponential functions

NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 3 Graphing an Exponential Function

KEY:exponential function

49.ANS:DPTS:1DIF:L3REF:7-6 Exponential Functions

OBJ:7-6.1 To evaluate and graph exponential functions

NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 3 Graphing an Exponential Function

KEY:exponential function

50.ANS:APTS:1DIF:L4REF:7-6 Exponential Functions

OBJ:7-6.1 To evaluate and graph exponential functions

NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 3 Graphing an Exponential Function

KEY:exponential function

51.ANS:BPTS:1DIF:L4REF:7-7 Exponential Growth and Decay

OBJ:7-7.1 To model exponential growth and decay

NAT:CC A.SSE.1.b| CC A.SSE.3.c| CC A.CED.2| CC F.IF.4| CC F.IF.8.b| CC F.BF.3| CC F.LE.1.c| CC F.LE.5| A.2.g| A.3.h| A.4.c TOP: 7-7 Problem 1 Modeling Exponential Growth

KEY:exponential growth | growth factor

52.ANS:BPTS:1DIF:L4REF:7-7 Exponential Growth and Decay

OBJ:7-7.1 To model exponential growth and decay

NAT:CC A.SSE.1.b| CC A.SSE.3.c| CC A.CED.2| CC F.IF.4| CC F.IF.8.b| CC F.BF.3| CC F.LE.1.c| CC F.LE.5| A.2.g| A.3.h| A.4.c TOP: 7-7 Problem 1 Modeling Exponential Growth

KEY:exponential growth | growth factor

53.ANS:CPTS:1DIF:L3REF:7-7 Exponential Growth and Decay

OBJ:7-7.1 To model exponential growth and decay

NAT:CC A.SSE.1.b| CC A.SSE.3.c| CC A.CED.2| CC F.IF.4| CC F.IF.8.b| CC F.BF.3| CC F.LE.1.c| CC F.LE.5| A.2.g| A.3.h| A.4.c TOP: 7-7 Problem 3 Modeling Exponential Decay

KEY:exponential decay | decay factor

54.ANS:DPTS:1DIF:L3REF:7-7 Exponential Growth and Decay

OBJ:7-7.1 To model exponential growth and decay

NAT:CC A.SSE.1.b| CC A.SSE.3.c| CC A.CED.2| CC F.IF.4| CC F.IF.8.b| CC F.BF.3| CC F.LE.1.c| CC F.LE.5| A.2.g| A.3.h| A.4.c TOP: 7-7 Problem 3 Modeling Exponential Decay

KEY:exponential decay | decay factor

55.ANS:APTS:1DIF:L2REF:7-8 Geometric Sequences

OBJ:7-8.1 To write and use recursive formulas for geometric sequences

NAT:CC A.SSE.1.a| CC F.IF.3| CC F.BF.1.a| CC F.BF.2| CC F.LE.2

TOP:7-8 Problem 1 Identifying Geometric SequencesKEY:geometric sequence | common ratio

56.ANS:

An exponential function; the common ratio is 4 and the function is .

PTS:1DIF:L2REF:7-6 Exponential Functions

OBJ:7-6.1 To evaluate and graph exponential functions

NAT:CC A.CED.2| CC A.REI.11| CC F.IF.4| CC F.IF.5| CC F.IF.7.e| CC F.IF.9| CC F.LE.2| A.1.b| A.1.e| A.1.h| A.2.h| A.3.h TOP: 7-6 Problem 1 Identifying Linear and Exponential Functions

KEY:exponential function

57.ANS:BPTS:1DIF:L3

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 1 Finding the Degree of a MonomialKEY:monomial | degree of a monomial

58.ANS:BPTS:1DIF:L3

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 1 Finding the Degree of a MonomialKEY:monomial | degree of a monomial

59.ANS:CPTS:1DIF:L2

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 1 Finding the Degree of a MonomialKEY:monomial | degree of a monomial

60.ANS:BPTS:1DIF:L2

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 1 Finding the Degree of a MonomialKEY:monomial | degree of a monomial

61.ANS:APTS:1DIF:L3

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 2 Adding and Subtracting MonomialsKEY:monomial | degree of a monomial

62.ANS:DPTS:1DIF:L3

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 2 Adding and Subtracting MonomialsKEY:monomial | degree of a monomial

63.ANS:BPTS:1DIF:L3

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 2 Adding and Subtracting MonomialsKEY:monomial | degree of a monomial

64.ANS:APTS:1DIF:L3

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 3 Classifying Polynomials

KEY:monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | trinomial

65.ANS:CPTS:1DIF:L3

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 3 Classifying Polynomials

KEY:monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | trinomial

66.ANS:CPTS:1DIF:L2

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 3 Classifying Polynomials

KEY:monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | binomial | trinomial

67.ANS:CPTS:1DIF:L4

REF:8-1 Adding and Subtracting Polynomials

OBJ:8-1.1 To classify, add, and subtract polynomialsNAT:CC A.APR.1| A.3.c| A.3.e

TOP:8-1 Problem 4 Adding Polynomials

KEY:polynomial | trinomial | standard form of a polynomial