University of Massachusetts Dartmouth s2

Tags

UNIVERSITY OF MASSACHUSETTS DARTMOUTH

COLLEGE OF ENGINEERING

EGR 101 INTRODUCTION TO ENGINEERING THROUGH APPLIED SCIENCE I

INTRODUCTION TO BREADBOARDING AND MULTISIM

In this experiment, you will be introduced to a simple circuit construction technique known as "breadboarding". In industry, this technique is used to construct what are known as "prototype" circuits. Prototype circuits are experimental, or, under development, and need to be constructed in a temporary fashion (rather than in final form) since they might require one or more modifications before they are considered complete.

The device upon which the circuit construction takes place is called a breadboard. A typical breadboard is shown below.

Although there is some slight variation in breadboards from one manufacturer to another, most breadboards of this type feature a channel down the middle (from left to right) that separates "columns" of common connection points (nodes). For example, all of the nodes in column 1 that are labeled A - E are common (they are the same node). All of the connection points in column 1 that are labeled F - J are common, but they are not connected to nodes A - E. This configuration is repeated for the other 60 or so columns.

There is usually another set of nodes that are arranged in horizontal "rows" across the top and bottom of the breadboard. The nodes in these rows are connected together while the rows are isolated from each other (not connected together). In the example above, there are a total of 8 rows of nodes – 4 rows across the top of the breadboard and 4 rows across the bottom. The rows are separated from each other near column 30. The breadboard that we will use does not have that separation, and there are red and blue stripes running along the rows to indicate the nodes that are connected together.

You will construct each of the resistor circuits shown below. Note, for this experiment, no power is needed.

(a) (b) (c)

FOR EACH CIRCUIT:

·  Determine the resistance of each resistor by:

o  Color code

o  Measurement using the multimeter.

·  Determine the total, or equivalent, resistance using the multimeter.

·  Draw a schematic showing how the resistors are connected together.

·  Based on the multimeter results, determine the relationship between the total resistance and the resistance of each individual resistor.

·  Verify your results using MultiSim (see MultiSim tutorial below).

·  Tabulate your results using EXCEL. Include the nominal resistor values, the resistor values measured with the DMM, the total resistance measured with the multimeter and the total resistance predicted by MultiSim.

·  Hand in one set of results per team that includes your MultiSim circuits (labeled with your team names and number), your EXCEL table and the mathematical relation your team determined for each circuit.

Circuit (a) / Nominal values / DMM values / MultiSim
: <put colors here> / <put value based on colors here> / <put real DMM readings here> / <put MultiSim readings here>
:
:
Circuit (b) / Nominal values / DMM values / MultiSim
:
Circuit (c) / Nominal values / DMM values / Multisim
:

REQUIRED RESISTORS

The 4 resistors required to perform the experiment will be available in the lab. Determine the required values of resistance from the following color code combinations:

CIRCUIT (a)

R1: Brown Black Red

R2: Yellow Violet Red

CIRCUIT (b)

R1 & R2 from circuit (a) plus

R3: Green Blue Red

CIRCUIT (c)

R1, R2, and R3 from circuit (b) plus

R4: Brown Black Yellow

MULTISIM Basics

For this lab, you will use the following components:

Resistors (under Basic):

(you will have to select the correct values from the list)

Ground (under Sources, Power Sources):

Measurement Devices:
Multimeter (top device in rightmost column of icons):

If you double click on the device, you see:

Click on W to have it measure resistance.

The black area is where the resistance will be displayed.

Connect elements together by clicking and dragging a wire from one to the next.

Example circuit for measuring the resistance of a single resistor:

You will need to know how your breadboard resistors are connected in order to draw the circuit correctly. Once your circuit is wired correctly, start the simulation by toggling the rocker switch on the upper toolbar (labeled 0 | 1). Double click on the multimeter (if it’s not already displaying a value) to read the resistance value.