Theoretical Investigation of Reaction Mechanisms of Alkaline Hydrolysis of 2,3,6-Trinitro-β-D-glucopyranose as a Monomer ofNitrocellulose

Manoj K. Shukla* and Frances Hill

US Army Engineer Research and DevelopmentCenter, Environmental Laboratory,

3909 Halls Ferry Road, Vicksburg, MS39180-6199

Supporting Information

Table S1: Computed total energy (ΔE, kcal/mol), enthalpy (ΔH, kcal/mol) and Gibbs free energy (ΔG, kcal/mol) of formation of transition states and products during different steps in the alkaline hydrolysis (direct attack) of nitrocellulose monomer (NC) with initial reaction starting at the C2 site in the gas phase and in water solution at the B3LYP/6-311G(d,p) level.

------

Reaction/NumberGas PhaseWater Solution

------

ΔE ΔH ΔGΔE ΔH ΔG

------

NC + OH— NC2TS—1a 25.36 24.49 27.20 29.01 28.53 29.93

NC-2TS— NC2TSI + NO3—1b-16.93-16.62-29.84-45.44-45.44-57.09

NC-2TSI + OH— NC2TSI3TS—2a 23.82 22.97 25.44 27.21 26.41 28.62

NC-2TSI3TS— NC2TSI3TSI + NO3—2b-25.42-25.26-37.73-50.45-50.19-62.69

NC-2TSI3TSI + OH—  NC2TSI3TSI6TS— 3a 21.10 20.42 21.39 22.74 21.94 23.49

NC-2TSI3TSI6TS—  P + NO3—3b-14.27-13.90-25.52-39.17-38.78 -50.44

NC-2TSI + OH— NC2TSI6TS—4a 20.48 19.77 20.84 22.54 21.70 23.13

NC-2TSI6TS— NC2TSI6TSI + NO3—4b -6.57 -6.50-17.58-34.86-34.79-45.66

NC-2TSI6TSI + OH—  NC2TSI6TSI3TS— 5a 21.44 20.58 23.01 25.60 24.83 27.41

NC-2TSI6TSI3TS—  P + NO3—5b-30.24-30.13-42.38-51.06-50.93 -63.15

------

Table S2: Computed total energy (ΔE, kcal/mol), enthalpy (ΔH, kcal/mol) and Gibbs free energy (ΔG, kcal/mol) of formation of transition states and products during different steps in the alkaline hydrolysis (direct attack) of nitrocellulose monomer (NC) with initial reaction starting at the C3 site in the gas phase and in water solution at the B3LYP/6-311G(d,p) level.

------

Reaction/NumberGas PhaseWater Solution

------

ΔE ΔH ΔGΔE ΔH ΔG

------

NC + OH— NC3TS—1a 22.29 21.69 23.63 24.41 23.89 25.55

NC-3TS— NC3TSI + NO3—1b-15.62-15.56-28.12-44.16-44.12-56.25

NC-3TSI + OH— NC3TSI2TS—2a 21.80 21.01 23.25 24.76 23.85 26.78

NC-3TSI2TS— NC3TSI2TSI + NO3—2b-19.69-19.29-32.27-46.67-46.28-59.11

NC-3TSI2TSI + OH—  NC3TSI2TSI6TS— 3a 21.10 20.42 21.3922.7421.24 23.49

NC-3TSI2TSI6TS—  P + NO3—3b-14.27-13.90-25.52-39.17-38.78 -50.44

NC-3TSI + OH— NC3TSI6TS—4a 27.33 27.04 27.88 27.09 26.80 27.73

NC-3TSI6TS— NC3TSI6TSI + NO3—4b-12.22-12.48-23.29-38.70-39.00-49.91

NC-3TSI6TSI + OH—  NC3TSI6TSI2TS— 5a 27.14 26.60 28.07 31.18 30.68 31.98

NC-3TSI6TSI2TS—  P + NO3—5b-23.15-22.83-35.35-47.23-46.96 -59.36

Table S3: Computed total energy (ΔE, kcal/mol), enthalpy (ΔH, kcal/mol) and Gibbs free energy (ΔG, kcal/mol) of formation of transition states and products during different steps in the alkaline hydrolysis (direct attack) of nitrocellulose monomer (NC) with initial reaction starting at the C6 site in the gas phase and in water solution at the B3LYP/6-311G(d,p) level.

------

Reaction/NumberGas PhaseWater Solution

------

ΔE ΔH ΔGΔE ΔH ΔG

------

NC + OH— NC6TS—1a 22.57 21.73 23.9624.7724.0725.61

NC-6TS— NC6TSI + NO3—1b -6.94 - 6.92-18.71-36.70-36.79-48.25

NC-6TSI + OH— NC6TSI2TS—2a 20.82 19.90 22.7123.0022.44 23.55

NC-6TSI2TS— NC6TSI2TSI + NO3—2b-18.18-18.20-30.42-42.66-43.01-53.79

NC-6TSI2TSI + OH—  NC6TSI2TSI3TS— 3a 21.44 20.58 23.0125.6024.83 27.41

NC-6TSI2TSI3TS—  P + NO3—3b -30.24-30.13-42.39-51.06-50.93 -63.15

NC-6TSI + OH— NC6TSI3TS—4a 19.61 19.04 20.7322.8822.35 24.10

NC-6TSI3TS— NC6TSI3TSI + NO3—4b -15.55-15.80-27.34-40.82-41.19-52.40

NC-6TSI3TSI + OH—  NC6TSI3TSI2TS— 5a 27.14 26.60 28.0731.1830.6831.98

NC-6TSI3TSI2TS—  P + NO3—5b -23.15-22.83-35.35-47.23-46.96 -59.36

------

Table S4: Computed total energy (ΔE, kcal/mol), enthalpy (ΔH, kcal/mol) and Gibbs free energy (ΔG, kcal/mol) of formation of transition state and product corresponding to the ring opening (cleavage) of nitrocellulose monomer (NC) during the alkaline hydrolysis in the gas phase and in water solution at the B3LYP/6-311G(d,p) level.

------

Reaction/NumberGas PhaseWater Solution

------

B3LYPB3LYP

------

ΔE ΔH ΔGΔE ΔH ΔG

------

NC + OH— NC-5TS—76.3576.2076.9076.1876.01 76.92

NC-5TS— NC-5TSI—-71.96-72.18-72.03-73.78-74.03-73.84

------

Table S5: Computed total energy (ΔE, kcal/mol), enthalpy (ΔH, kcal/mol) and Gibbs free energy (ΔG, kcal/mol) of formation of transition states and products during different steps in the alkaline hydrolysis (angular attack) of nitrocellulose (NC) with initial reaction starting at the C2 site in the gas phase and in water solution at the B3LYP/6-311G(d,p) level.a

------

Reaction/NumberGas PhaseWater Solution

------

ΔE ΔH ΔG ΔEΔH ΔG

------

NCss + OH— NC2TS—1a 65.15 65.17 64.70 60.88 60.99 60.42

NCss-2TS— NC2TSI + NO3—1b-56.45-56.94-67.08-78.36-78.79-89.08

NCss-2TSI + OH— NC2TSI3TS—2a 66.60 66.70 66.69 59.99 60.25 59.98

NCss-2TSI3TS— NC2TSI3TSI + NO3—2b-57.94-58.52-69.19-79.40-80.03-90.73

NCss-2TSI3TSI + OH—  NC2TSI3TSI6TS— 3a 17.12 16.36 18.32 21.17 20.43 22.33

NCss-2TSI3TSI6TS—  P + NO3—3b-15.36-14.98-27.36-40.69-40.35-52.48

NCss-2TSI + OH— NC2TSI6TS—4a 19.62 18.81 21.21 22.27 21.56 23.22

NCss-2TSI6TS— NC2TSI6TSI + NO3—4b -12.35-11.91-24.67-38.76-38.26-50.92

NCss-2TSI6TSI + OH—  NC2TSI6TSI3TS— 5a 70.13 70.59 69.81 60.03 60.73 59.30

NCss-2TSI6TSI3TS—  P + NO3—5b -63.82-64.50-74.85-79.23-80.04-89.91

a: NCss represents that OH- attacks the same side with respect to the –ONO2 group.

Table S6: Computed total energy (ΔE, kcal/mol), enthalpy (ΔH, kcal/mol) and Gibbs free energy (ΔG, kcal/mol) of formation of transition states and products during different steps in the alkaline hydrolysis (angular attack) of nitrocellulose (NC) with initial reaction starting at the C3 site in the gas phase and in water solution at the B3LYP/6-311G(d,p) level.a

------

Reaction/NumberGas PhaseWater Solution

------

ΔEΔHΔGΔEΔHΔG

------

NCss + OH— NC3TS—1a 66.16 66.05 66.12 62.25 62.36 62.12

NCss-3TS— NC3TSI + NO3—1b-50.51-51.01-61.72-76.14-76.77-87.41

NCss-3TSI + OH— NC3TSI2TS—2a 57.02 56.32 57.85 12.13 12.40 10.56

NCss-3TSI2TS— NC3TSI2TSI + NO3—2b-55.60-55.58-67.19-34.39-35.10-43.92

NCss-3TSI2TSI + OH—  NC3TSI2TSI6TS— 3a 17.12 16.36 18.32 21.17 20.43 22.33

NCss-3TSI2TSI6TS—  P + NO3—3b-15.36-14.98-27.36-40.69-40.35-52.48

NCss-3TSI + OH— NC3TSI6TS—4a 20.84 20.05 22.20 24.13 23.44 25.38

NCss-3TSI6TS— NC3TSI6TSI + NO3—4b -9.48 -9.45-21.15-37.63-37.73-48.87

NCss-3TSI6TSI + OH—  NC3TSI6TSI2TS— 5a 63.86 63.94 63.44 56.64 56.91 56.23

NCss-3TSI6TSI2TS—  P + NO3—5b-68.85-69.59-79.06-80.94-81.57-91.64

a: NCss represents that OH- attacks the same side with respect to the –ONO2 group.

Table S7: Computed total energy (ΔE, kcal/mol), enthalpy (ΔH, kcal/mol) and Gibbs free energy (ΔG, kcal/mol) of formation of transition states and products during different steps in the alkaline hydrolysis (angular attack) of nitrocellulose (NC) with initial reaction starting at the C6 site in the gas phase and in water solution at the B3LYP/6-311G(d,p) level.a

------

Reaction/NumberGas PhaseWater Solution

------

ΔEΔH ΔGΔEΔHΔG

------

NCss + OH— NC6TS—1a 22.57 21.73 23.96 24.77 24.07 25.61

NCss-6TS— NC6TSI + NO3—1b -6.94 -6.92-18.71-36.70-36.79-48.25

NCss-6TSI + OH— NC6TSI2TS—2a 65.20 65.36 65.04 59.23 59.43 58.55

NCss-6TSI2TS— NC6TSI2TSI + NO3—2b-61.59-62.17-72.35-78.40-78.91-88.82

NCss-6TSI2TSI + OH—  NC6TSI2TSI3TS— 3a 70.13 70.59 69.81 60.03 60.73 59.30

NCss-6TSI2TSI3TS—  P + NO3—3b-63.82-64.50-74.85-79.23-80.04-89.91

NCss-6TSI + OH— NC6TSI3TS—4a 70.18 70.30 70.10 61.99 62.46 60.92

NCss-6TSI3TS— NC6TSI3TSI + NO3—4b-58.17-59.10-68.59-77.68-78.93-87.28

NCss-6TSI3TSI + OH—  NC6TSI3TSI2TS— 5a 63.86 63.94 63.44 56.64 56.91 56.23

NCss-6TSI3TSI2TS—  P + NO3—5b-68.85-69.59-79.06-80.94-81.57-91.64

a: NCss represents that OH- attacks the same side with respect to the –ONO2 group.

Figure S1:- Alkaline hydrolysis reaction pathways for NC where OH- attack the same side with respect to the -ONO2 group and the C2 site is first to be denitrated. The ∆G values (top- gas phase; bottom (italics) in water) obtained at the B3LYP/6-311G(d,p) level are in kcal/mol.

Figure S2:- Alkaline hydrolysis reaction pathways for NC where OH- attack the same side with respect to the -ONO2 group and the C3 site is first to be denitrated. The ∆G values (top- gas phase; bottom (italics) in water) obtained at the B3LYP/6-311G(d,p) level are in kcal/mol.

Figure S3:- Alkaline hydrolysis reaction pathways for NC where OH- attack the same side with respect to the -ONO2 group and the C6 site is first to be denitrated. The ∆G values (top- gas phase; bottom (italics) in water) obtained at the B3LYP/6-311G(d,p) level are in kcal/mol.

1