Supplementary Table 1. Small molecules used in this study.

Name / Target(s) or Pathway(s) / Structure / Conc. used* / Source / IRIF† / Fig. / Table Ref.
2-deoxy-D-glucose
(2-DG) / Glycolysis
N-Linked glycosylation / / 4mmol/L
50mmol/L / Sigma
D6134 / P / 1,2, S2, S3 / (1, 2)
Phloretin / GLUT
Glycolysis / / 10µmol/L / Sigma P7912 / P / 1, S2 / (3, 4)
Compound 11 / GLUT1
Glycolysis / / 10 µmol/L / Ref. (5) / P / 1, S2 / (5)
Compound 12 / GLUT1
Glycolysis / / 10 µmol/L / Ref. (5) / P / 1, S2 / (5)
3-bromo pyruvate
(3-BP) / HXK
Glycolysis / / 50 µmol/L / Calbiochem
376817 / P / 1, S2 / (6, 7)
3-PO / PFK2
Glycolysis / / 5 µmol/L / Calbiochem
376817 / P / 1, S2 / (8)
Alizarin Red S / PGAM1
Glycolysis / / 10 µmol/L / Sigma
A5533 / P / 1, S2 / (9)
Sodium oxamate / LDH
Glycolysis / / 1mmol/L / Sigma
O2751 / P / 1, S2 / (10, 11)
N-acetyl-L-cysteine / antioxidant / / 5mmol/L / Sigma
A9165 / P (L) / S4 / (12)
Butylatedhydroxy
anisole
(BHA) / antioxidant / / 100 µmol/L / Sigma
B1253 / P(L) / S4 / (13)
EUK134 / antioxidant / / 20 µmol/L / Cayman Chemical
10006329 / P(L) / S4 / (14)
Veliparib / PARP1,2 / / 10 µmol/L / ChemieTek
CT-A888 / P / S1, S3 / (15)
N-acethyl-D-glucoseamine
(GlcNAc) / Monosaccharide derivative, HBP intermediate / / 5mmol/L / Sigma
A3286 / R(L) / 3,5, S6 / (16)
Tunicamycin / N-Linked glycosylation / / 2µg/mL / Calbiochem
654380 / P / 2 / (17)
2-Fluoro-2-deoxy-D-glucose
(2-FDG) / Glycolysis
N-Linked glycosylation / / 4mmol/L / Sigma
F5006 / P / 2 / (2)
D-(+)-Mannose / UPR / / 1mmol/L / Sigma
63580 / ND / 2 / (2)
Azaserine / GFAT
HBP / / 1 µmol/L
O/N / Sigma
A4142 / P / 3 / (18)
phenyl 5-chloro-2-oxo-3-hydrobenzoxazole-3-carboxylate / OGT
HBP / / 12.5 µmol/L
O/N / TimTec
ST060266 / P / 3, 5, S6 / (19)
PUGNAc / OGA
HBP / / 50 µmol/L
O/N / Sigma
A7229 / R(L) / 3,5, 6, S6 / (20)
Thapsigargin / UPR / / 300nmol/L / Calbiochem
586005 / P / 2 / (17, 21)
Alloxan monohydrate / OGT
HBP / / 5mmol/L
O/N / Sigma
A7413 / P / 3, 5, S6 / (22)
Benzyl 2-acetamido-2-deoxy--D-galactopyranoside
(BADGP) / OGT
HBP / / 5mmol/L
O/N / Sigma
B4894 / P / 3 / (23, 24)
Ethyl pyruvate / Glycolysis
TCA / / 5mmol/L / Sigma
E47808 / P / 4, S5 / (25, 26)
Sodium dichloro
Acetate (DCA) / PDHK
TCA / / 1mmol/L / Sigma
347795 / P / 4, S5 / (27, 28)
Oxaloacetic acid / TCA / / 1mmol/L / Sigma
O7753 / P / 4, S5 / (29, 30)
Dimethyl L-malate / TCA / / 5mmol/L / Matrix Scientific 075799 / P / 4, S5 / (29)
Compound 968 / Glutaminase
TCA
HBP / / 10 µmol/L / Calbiochem 352010 / R(L) / 4, S5 / (31)
Epigallo
catechinGallate (EGCG) / GLDH
TCA / / 50 µmol/L / Sigma
49044 / R(L) / 4, S5 / (32, 33)
Dimethyl 2-oxoglutarate
(-KG) / TCA / / 5mmol/L / Sigma
349631 / P / 4,5, S5, S6 / (34)
IOX1 / 2-OG-dependent oxygenases / / 25 µmol/L / Cayman Chemical 11572 / R (L) / 5, 6S6 / (35)
R-2-HG ester / 2-OG-dependent oxygenases / / 250 µmol/L / This study / R (L) / 5, S6 / (34, 36)
S-2-HG ester / 2-OG-dependent oxygenases / / 250 µmol/L / This study / R (L) / 5, S6 / (37)
2-(4-methyl
phenyl)-1,2-benzisothiazol-3(2H)-one (PBIT) / JARID1B / / 5 µmol/L / Sigma
PH009215 / R (L) / 5,S6 / (38)
GSKJ4 / JMJD3 / / 1 µmol/L / Cayman Chemical
12073 / R (L) / 5, S6 / (39)
BRD4770 / PRC2, G9a / / 10 µmol/L / Calbiochem 382194 / P / 6,
S6 / (40)
GSK126 / PRC2(EZH2) / / 2 µmol/L / XcessBio M60071 / P / 6 / (41)
PRT4165 / PRC1
(BMI- RNF2) / / 50-75 µmol/L / Calbiochem 203630 / P / 6 / (42, 43)

*Added to cells at 1h before irradiation unless otherwise noted (O/N = overnight)

† IRIF phenotype: P, Persistence; R, Resolution; (L), in low-glucose media; ND, not determined

Supplementary Table 1 References

1.Pelicano H, Martin D, Xu R, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25:4633-46.

2.Kurtoglu M, Maher J, Lampidis T. Differential Toxic Mechanisms of 2-Deoxy-D-Glucose versus2-Fluorodeoxy-D -Glucose in Hypoxic and Normoxic Tumor Cells. Antioxidants & Redox Signaling. 2007;9:1383-90.

3.Salter DW, Custead-Jones S, Cook JS. Quercetin inhibits hexose transport in a human diploid fibroblast. J Membr Biol. 1978;40:67-76.

4.Wu C, Ho Y, Tsai C, Wang Y, Tseng H, Wei P, et al. In vitroand in vivostudy of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer. 2009;124:2210-9.

5.Ulanovskaya O, Cui J, Kron S, Kozmin S. A Pairwise Chemical Genetic Screen Identifies New Inhibitors of Glucose Transport. Chemistry & Biology. 2011;18:222-30.

6.Ko YH, Pedersen PL, Geschwind JF. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett. 2001;173:83-91.

7.Shoshan M. 3-bromopyruvate: Targets and outcomes. J Bioenerg Biomembr. 2012;44:7-15.

8.Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008;7:110-20.

9.Hitosugi T, Zhou L, Elf S, Fan J, Kang H, Seo J, et al. Phosphoglycerate Mutase 1 Coordinates Glycolysis and Biosynthesis to Promote Tumor Growth. CCELL. 2013;22:585-600.

10.Novoa WB, Winer AD, Glaid AJ, Schwert GW. Lactic dehydrogenase. V. Inhibition by oxamate and by oxalate. J Biol Chem. 1959;234:1143-8.

11.Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005;102:5992-7.

12.Owada S, Shimoda Y, Tsuchihara K, Esumi H, Yodoi J. Critical Role of H2O2 Generated by NOX4 during Cellular Response under Glucose Deprivation. PLoS ONE. 2013;8:e56628.

13.Festjens N, Kalai M, Smet J, Meeus A, Van Coster R, Saelens X, et al. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death Differ. 2006;13:166-9.

14.Decraene D, Smaers K, Gan D, Mammone T, Matsui M, Maes D, et al. A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes. J Invest Dermatol. 2004;122:484-91.

15.Penning TD, Zhu GD, Gandhi VB, Gong J, Liu X, Shi Y, et al. Discovery of the Poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52:514-23.

16.Grigorian A, Araujo L, Naidu N, Place D, Choudhury B, Demetriou M. N-Acetylglucosamine Inhibits T-helper 1 (Th1)/T-helper 17 (Th17) Cell Responses and Treats Experimental Autoimmune Encephalomyelitis. Journal of Biological Chemistry. 2011;286:40133-41.

17.Schönthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochemical Pharmacology. 2013;85:653-66.

18.Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991;266:4706-12.

19.Gross BJ, Kraybill BC, Walker S. Discovery of O-GlcNAc transferase inhibitors. J Am Chem Soc. 2005;127:14588-9.

20.Haltiwanger R. Modulation of O-Linked N-Acetylglucosamine Levels on Nuclear and Cytoplasmic Proteins in Vivo Using the Peptide O-GlcNAc-beta -N-acetylglucosaminidase Inhibitor O-(2-Acetamido-2-deoxy-Dglucopyranosylidene)amino-N-phenylcarbamate. Journal of Biological Chemistry. 1998;273:3611-7.

21.Treiman M, Caspersen C, Christensen SB. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci. 1998;19:131-5.

22.Konrad RJ, Zhang F, Hale JE, Knierman MD, Becker GW, Kudlow JE. Alloxan is an inhibitor of the enzyme O-linked N-acetylglucosamine transferase. Biochem Biophys Res Commun. 2002;293:207-12.

23.Pantaleon M, Tan H, Kafer G, Kaye P. Toxic Effects of Hyperglycemia Are Mediated by the Hexosamine Signaling Pathway and O-Linked Glycosylation in Early Mouse Embryos. Biology of Reproduction. 2010;82:751-8.

24.Paszkiewicz-Gadek A, Porowska H, Lemancewicz D, Wolczynski S, Gindzienski A. The influence of N- and O-glycosylation inhibitors on the glycosylation profile of cellular membrane proteins and adhesive properties of carcinoma cell lines. Int J Mol Med. 2006;17:669-74.

25.Kao KK, Fink MP. The biochemical basis for the anti-inflammatory and cytoprotective actions of ethyl pyruvate and related compounds. Biochemical Pharmacology. 2010;80:151-9.

26.Kim S, Choi J, Park C, Jeong J. Ethyl pyruvate stabilizes hypoxia-inducible factor 1 alpha via stimulation of the TCA cycle. Cancer Lett. 2010;295:236-41.

27.Sutendra G, Michelakis E. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol. 2013;3:1-11.

28.Michelakis E, Webster L, Mackey J. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99:989-94.

29.Sugden M, Holness M. The pyruvate carboxylase-pyruvate dehydrogenase axis in islet pyruvate metabolism: Going round in circles? islets. 2011;3:302-19.

30.DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104:19345-50.

31.Simpson NE, Tryndyak VP, Pogribna M, Beland FA, Pogribny IP. Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype. Epigenetics. 2012;7:1413-20.

32.Li C. Green Tea Polyphenols Modulate Insulin Secretion by Inhibiting Glutamate Dehydrogenase. Journal of Biological Chemistry. 2006;281:10214-21.

33.Yang C, Sudderth J, Dang T, Bachoo R, Mcdonald J, Deberardinis R. Glioblastoma Cells Require Glutamate Dehydrogenase to Survive Impairments of Glucose Metabolism or Akt Signaling. Cancer Res. 2009;69:7986-93.

34.Losman J, Kaelin W. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes & Development. 2013;27:836-52.

35.King O, Li X, Sakurai M, Kawamura A, Rose N, Ng S, et al. Quantitative High-Throughput Screening Identifies 8-Hydroxyquinolines as Cell-Active Histone Demethylase Inhibitors. PLoS ONE. 2010;5:e15535.

36.Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739-44.

37.Losman J, Looper R, Koivunen P, Lee S, Schneider R, Mcmahon C, et al. (R)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible. Science. 2013;339:1621-5.

38.Sayegh J, Cao J, Zou MR, Morales A, Blair LP, Norcia M, et al. Identification of small molecule inhibitors of Jumonji AT-rich interactive domain 1B (JARID1B) histone demethylase by a sensitive high throughput screen. J Biol Chem. 2013;288:9408-17.

39.Kruidenier L, Chung C, Cheng Z, Liddle J, Che K, Joberty G, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488:404-8.

40.Yuan Y, Wang Q, Paulk J, Kubicek S, Kemp MM, Adams DJ, et al. A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem Biol. 2012;7:1152-7.

41.Mccabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Aller GSV, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492:108-12.

42.Alchanati I, Teicher C, Cohen G, Shemesh V, Barr H, Nakache P, et al. The E3 ubiquitin-ligase Bmi1/Ring1A controls the proteasomal degradation of Top2alpha cleavage complex - a potentially new drug target. PLoS ONE. 2009;4:e8104.

43.Ismail IH, McDonald D, Strickfaden H, Xu Z, Hendzel MJ. A Small Molecule Inhibitor of Polycomb Repressive Complex 1 Inhibits Ubiquitin Signaling at DNA Double-strand Breaks. J Biol Chem. 2013;288:26944-54.