Supplementary Table 1. List of TREX1 variants associated with AGS, FCL, SLE / SS and RVCL

Clinical phenotype / Inheritance / Genomic location / cDNA change / Protein change / Short protein nomenclature / ExAc frequency / Reference(s)
AGS / Recessive / 48,508,093 / c.38C>A / p.Thr13Asn / T13N / 0/122703 / #
FCL / Dominant ?SNP¶ / 48,508,103 / c.50T>C / p.Phe17Ser / F17S / 7/122734 / (1)
AGS + FCL / Dominant or de novo / 48,508,106 / c.52G>A / p.Asp18Asn / D18N / 0/122751 / (2, 3)
AGS / ND / 48,508,106 / c.52G>C / p.Asp18His / D18H / 0/122751 / #
AGS / Recessive / 48,508,149 / c.95C>G / p.Thr32Arg / T32R / 0/122691 / #
AGS / Recessive / 48,508,251 / c.197A>G / p.Lys66Arg / K66R / 6/122660 / (4)
AGS / Recessive / 48,508,329 / c.275T>A / p.Leu92Gln / L92Q / 0/122600 / #
AGS + SLE / Recessive / possibly dominant in SLE / 48,508,344 / c.290G>A / p.Arg97His / R97H / 5/122598 / (5, 6)
AGS + SLE / Recessive / possibly dominant in SLE / 48,508,395 / c.341G>A / p.Arg114His / R114H / 19/120730 / (7-10)
AGS / Recessive / 48,508,419 / c.365T>C / p.Val122Ala / V122A / 0/122629 / (11)
SLE / Possibly dominant / 48,508,437 / c.383G>A / p.Arg128His / R128H / 1/122596 / (12)
FCL / Dominant / 48,508,448 / c.394C>G / p.Pro132Ala / P132A / 2/121062 / (13)
SLE / Possibly dominant / 48,508,527 / c.473C>T / p.Ala158Val / A158V / 3/122526 / (8)
AGS / Recessive / 48,508,539 / c.485T>C / p.Leu162Pro / L162P / 0/122517 / (4)
AGS / Recessive / 48,508,607 / c.553C>T / p.Arg185Cys / R185C / 2/122616 / #
AGS / Dominant or de novo / 48,508,637 / c.583C>T / p.His195Tyr / H195Y / 0/122587 / (14)
FCL / Dominant / 48,508,639 / c.585C>G / p.His195Gln / H195Q / 0/122587 / (15)
AGS + SS / Recessive / possibly dominant in SS / 48,508,646 / c.592G>A / p.Glu198Lys / E198K / 0/122621 / (16, 17)
AGS / Dominant or de novo / 48,508,652 / c.598G>A / p.Asp200Asn / D200N / 0/122617 / (1)
AGS / Dominant or de novo / 48,508,652 / c.598G>C / p.Asp200His / D200H / 0/122617 / (16)
AGS / Recessive / 48,508,656 / c.602T>A / p.Val201Asp / V201N / 0/122617 / (7)
AGS / Recessive / 48,508,713 / c.659A>G / p.Asp220Gly / D220G / 0/122678 / #
AGS / Recessive / 48,508,721 / c.667G>A / p.Ala223Thr / A223T / 2/122676 / (14)
SLE / Possibly dominant / 48,508,733 / c.679G>A / p.Gly227Ser / G227S / 18/122700 / (8)
SLE / Possibly dominant / 48,508,774 / c.720G>C / p.Arg240Ser / R240S / 26/122778 / (8, 9)
SLE / Possibly dominant / 48,508,793 / c.739G>C / p.Ala247Pro / A247P / 16/122794 / (8, 9)
SLE / Possibly dominant / 48,508,923 / c.869C>T / p.Pro290Leu / P290L / 6/121912 / (8, 10)
AGS / Recessive / 48,508,961 / c.907A>C / p.Thr303Pro / T303P / 2/120998 / (11)
SLE / Possibly dominant / 48,508,968 / c.914A>G / p.Tyr305Cys / Y305C / 17/120566 / (8, 9)
SS / Possibly dominant / 48,508,971 / c.917G>C / p.Gly306Ala / G306A / 1/120268 / (8)
AGS / Recessive / 48,508,544 / c.490C>T / p.Arg164*§ / R164* / 0/122513 / (7)
AGS / Recessive / 48,508,113 / c.58dup / p.Glu20Glyfs*82 / E20Gfs*82 / 0/122751 / (7)
AGS / Recessive / 48,508,199 / c.144dupC / p.Thr49Hisfs*50 / T49Hfs*50 / 0/122617 / #
AGS / Recessive / 48,508,204 / c.150_151del / p.Gln51Glyfs*50 / Q51Gfs*50 / 0/122603 / (16)
AGS / Recessive / 48,508,206 / c.152_153del / p.Gln51Argfs*50 / Q51Rfs*50 / 1/122602 / (4)
AGS / Recessive / 48,508,267 / c.212_213dup / p.Ala72Trpfs*17 / A72Wfs*17 / 0/122632 / (11)
AGS / Recessive / 48,508,294 / c.240dup / p.Ala81Serfs*21 / A81Sfs*21 / 0/122619 / #
AGS / Recessive / 48,508,291 / c.236_243dup / p.Ser82Leufs*9 / S82Lfs*9 / 0/122619 / #
AGS / Recessive / 48,508,316 / c.262_263insAG / p.Ser88Lysfs*23 / S88Kfs*23 / 0/122615 / (5)
AGS / Recessive / 48,508,348 / c.294dup / p.Cys99Metfs*3 / C99Mfs*3 / 0/122613 / (18)
AGS / Recessive / 48,508,422 / c.366_368dup / p.Ala123dup / A123dup / 0/122629 / (11)
FCL / Dominant / 48,508,429 / c.375dup / p.Gly126Trpfs*2 / G126fWs*2 / 0/122629 / (1)
AGS / Recessive / 48,508,451 / c.397delC / p.Leu133Cysfs*27 / L133Cfs*27 / 0/122611 / (11)
AGS / Recessive / 48,508,462 / c.393_408dup / p.Glu137Profs*24 / Q137Pfs*24 / 0/122611 / (11)
AGS / Recessive / 48,508,469 / c.415_416delGC / p.Ala139Tyrfs*16 / A139Yfs*16 / 0/122569 / #
AGS / Recessive / 48,508,521 / c.467delT / p.Ile156Thrfs*4 / I156Tfs*4 / 0/122531 / #
AGS / Recessive / 48,508,524 / c.470del / p.Thr157Metfs*3 / T157Mfs*3 / 0/122531 / #
AGS / Recessive / 48,508,554 / c.500del / p.Ser167Thrfs*13 / S167Tfs*13 / 0/122537 / (11)
AGS / Recessive / 48,508,654 / c.598_600dup / p.Asp200dup / D200dup / 0/122617 / (7)
AGS / Recessive / 48,508,663 / c.609_662dup / p.Leu204_Ala221dup / L204_A221dup / 0/122659 / (11)
AGS / Recessive / 48,508,682 / c.625_628dup / p.Trp210Serfs*32 / W210Sfs*32 / 0/122659 / (11)
AGS + SLE / Recessive / possibly dominant in SLE / 48,508,689 / c.635delC / p.Pro212Hisfs*65 / P212Hfs*65 / 1/122648 / (8, 16)
AGS / Recessive / 48,508,747 / c.693dupC / p.Met232Hisfs*9 / M232Hfs*9 / 0/122723 / #
RVCL / Dominant / 48,508,757 / c.703dup / p.Val235Glyfs*6 / V235Gfs*6 / 0/122739 / (19-21)
RVCL / Dominant / 48,508,760 / c.706dup / p.Thr236Asnfs*5 / T236Nfs*5 / 0/122739 / (19)
RVCL / Dominant / 48,508,799 / c.742_745dup / p.Thr249Serfs*14 / T249Sfs*14 / 0/122787 / (19, 22)
RVCL / Dominant / 48,508,861 / c.807_808insG / p.Thr270Aspfs*55 / T270Nfs*55 / 0/122701 / (21)
SLE / Possibly dominant / 48,508,866 / c.812_813insAA / p.Asp272Argfs*6 / D272Rfs*6 / 0/122673 / (8)
RVCL / Dominant / 48,508,876 / c.822delT / p.Pro275Glnfs*2 / P275Qfs*2 / 0/122673 / (23)
AGS / Recessive / 48,508,893 / c.839delG / p.Gly280Glufs*18 / G280Efs*18 / 0/122473 / (14)
RVCL / Dominant / 48,508,904 / c.850dup / p.Arg284Lysfs*41 / R284Kfs*41 / 0/122245 / (19)
RVCL / Dominant / 48,508,912 / c.858dup / p.Leu287Alafs*38 / L287Afs*38 / 0/122245 / (19)
AGS / Recessive / 48,508,912 / c.858delG / p.Leu287Cysfs*11 / L287Cfs*11 / 0/122245 / #
AGS / Recessive / 48,508,922 / c.868_885del / p.Pro290_Ala295del / P290_Ala295del / 0/122245 / (11, 16)

TREX1 transcript NM_033629.2. § Cree Indian founder mutation. ¶ Variant reported in association with the c.375dup mutation in a family with FCL, but may be a rare SNP. SS = Sjörgen’s syndrome.# Mutation reported on LOVD TREX1 database ( ExAc frequencies from

References

1.Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet. 2007;80(4):811-5.

2.Lee-Kirsch MA, Chowdhury D, Harvey S, Gong M, Senenko L, Engel K, et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med (Berl). 2007;85(5):531-7.

3.Haaxma CA, Crow YJ, van Steensel MA, Lammens MM, Rice GI, Verbeek MM, et al. A de novo p.Asp18Asn mutation in TREX1 in a patient with Aicardi-Goutieres syndrome. Am J Med Genet A. 2010;152A(10):2612-7.

4.Rice GI, Forte GM, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, et al. Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013;12(12):1159-69.

5.Olivieri I, Cattalini M, Tonduti D, La Piana R, Uggetti C, Galli J, et al. Dysregulation of the immune system in Aicardi-Goutieres syndrome: another example in a TREX1-mutated patient. Lupus. 2013;22(10):1064-9.

6.Ellyard JI, Jerjen R, Martin JL, Lee A, Field MA, Jiang SH, et al. Whole exome sequencing in early-onset cerebral SLE identifies a pathogenic variant in TREX1. Arthritis & rheumatology. 2014.

7.Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet. 2006;38(8):917-20.

8.Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39(9):1065-7.

9.Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A, et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12(4):270-9.

10.Pelzer N, de Vries B, Boon EM, Kruit MC, Haan J, Ferrari MD, et al. Heterozygous TREX1 mutations in early-onset cerebrovascular disease. J Neurol. 2013;260(8):2188-90.

11.Rice G, Patrick T, Parmar R, Taylor CF, Aeby A, Aicardi J, et al. Clinical and molecular phenotype of Aicardi-Goutieres syndrome. Am J Hum Genet. 2007;81(4):713-25.

12.de Vries B, Steup-Beekman GM, Haan J, Bollen EL, Luyendijk J, Frants RR, et al. TREX1 gene variant in neuropsychiatric systemic lupus erythematosus. Annals of the rheumatic diseases. 2010;69(10):1886-7.

13.Sugiura K, Takeichi T, Kono M, Ito Y, Ogawa Y, Muro Y, et al. Severe chilblain lupus is associated with heterozygous missense mutations of catalytic amino acids or their adjacent mutations in the exonuclease domains of 3'-repair exonuclease 1. The Journal of investigative dermatology. 2012;132(12):2855-7.

14.Abe J, Nakamura K, Nishikomori R, Kato M, Mitsuiki N, Izawa K, et al. A nationwide survey of Aicardi-Goutieres syndrome patients identifies a strong association between dominant TREX1 mutations and chilblain lesions: Japanese cohort study. Rheumatology (Oxford). 2014;53(3):448-58.

15.Gunther C, Berndt N, Wolf C, Lee-Kirsch MA. Familial Chilblain Lupus Due to a Novel Mutation in the Exonuclease III Domain of 3' Repair Exonuclease 1 (TREX1). JAMA dermatology. 2014.

16.Ramantani G, Kohlhase J, Hertzberg C, Innes AM, Engel K, Hunger S, et al. Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutieres syndrome. Arthritis Rheum. 2010;62(5):1469-77.

17.Barizzone N, Monti S, Mellone S, Godi M, Marchini M, Scorza R, et al. Rare variants in the TREX1 gene and susceptibility to autoimmune diseases. Biomed Res Int. 2013;2013:471703.

18.Soong BW, Liao YC, Tu PH, Tsai PC, Lee IH, Chung CP, et al. A homozygous NOTCH3 mutation p.R544C and a heterozygous TREX1 variant p.C99MfsX3 in a family with hereditary small vessel disease of the brain. Journal of the Chinese Medical Association : JCMA. 2013;76(6):319-24.

19.Richards A, van den Maagdenberg AM, Jen JC, Kavanagh D, Bertram P, Spitzer D, et al. C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39(9):1068-70.

20.Mateen FJ, Krecke K, Younge BR, Ford AL, Shaikh A, Kothari PH, et al. Evolution of a tumor-like lesion in cerebroretinal vasculopathy and TREX1 mutation. Neurology. 2010;75(13):1211-3.

21.DiFrancesco JC, Novara F, Zuffardi O, Forlino A, Gioia R, Cossu F, et al. TREX1 C-terminal frameshift mutations in the systemic variant of retinal vasculopathy with cerebral leukodystrophy. Neurol Sci. 2014.

22.Gruver AM, Schoenfield L, Coleman JF, Hajj-Ali R, Rodriguez ER, Tan CD. Novel ophthalmic pathology in an autopsy case of autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society. 2011;31(1):20-4.

23.Schuh E, Ertl-Wagner B, Lohse P, Wolf W, Mann JF, Lee-Kirsch MA, et al. Multiple sclerosis-like lesions and type I interferon signature in a patient with RVCL. Neurology(R) neuroimmunology & neuroinflammation. 2015;2(1):e55.