Response to reviewer comments:
We would like to thank the reviewer forproviding most helpful comments on our manuscript. Please find below an answer and clarification to each of the points raised.
Reviewer #1:
Comment 1:The article by Banerjee et al. focused on the expression and OATPs, STS and 17beta-hydroxysteroid dehydrogenase type-1 in hormone-dependent and -independent breast cancer. The results are of some interest, although there are a lack of functional studies that would have provided much needed insight into E1S transport and metabolism.
Response:We appreciate the reviewer finding the study interesting. To the best of our knowledge the comparative clinical expression of the OATPs among hormone-dependent and -independent breast cancer tissues has not been previously reported. These dataprovide further understanding of the role of the transporters (i.e. OATPs, BCRP, MRP-1) and enzymes (STS, 17β-HSD1) in E3S uptake and metabolism, respectively, in hormone dependent breast cancers. The expression of the OATPs, STS and 17β-HSD-1 were determined in sections obtained from 40 tumour blocks. We agree with the reviewer that additional functional data in the clinical sample would be valuable. However, we would like to emphasize that it was extremely challenging to obtain these human breast cancer tissues. The Research Ethics Board only approved the use of 8-9 (3-5µm thick) sections from each block. Hence although initially planned, we were not able to conduct functional transport/enzyme assays using the clinical samples. In order to address this limitation, we conducted functional transport experiments in hormone dependent (MCF-7, T47D, ZR-75) and independent (MDA-MB-231) breast cancer cells in the presence or absence of inhibitors ofOATP[(100µM Bromosulphophthalein (BSP)] and STS (20 μMSTX64) activity. Figure 8, in the manuscript (shown below) demonstrates the specificity of OATP mediated E3S uptake and STS mediated metabolism in hormone dependent breast cancer cells as observed by the significant reduction in E3S cellular uptake, and,increased cellular accumulation, of E3S in presence of BSP and STX64, respectively. As there was no significant difference observed in 17β-HSD-1 expression between the hormone dependent and independent clinical breast cancer samples, E3S cellular accumulation was not investigated in the presence of a 17β-HSD-1 inhibitor.
To clarify this point we added the following statement to the manuscript:
Section: Introduction; Page: 4paragraph 2
“It would be valuable to assess functional data in the clinical sample to compare the function of these transporters and enzymes in HR+ and HR- tumour tissues. However, it was extremely challenging to obtain these human breast cancer tissues.Hence, to better understand the observed differences in expression of these transporters and enzymes in the HR+ and HR- clinical tissues, the functional roles of OATP (in E3S uptake) and STS (in E3S metabolism) were examined in HR+ (MCF-7, T47D, ZR-75) and HR- (MDA-MB-231) breast cancer cell lines.”
Figure 8:Time course of [3H] E3S uptake by HR+/- breast cancer cells. Total uptake (closed circles) of E3S by the cells was evaluated over 30 min at pH 7.4 and 37˚C. The non- specific uptake (closed squares) and the non- specific metabolism (closed diamonds) were calculated by determining uptake in the presence of an excess concentration of transport inhibitor (BSP 100µM) and enzyme inhibitor (STX64 20mM) as described in the Materials and Methods section. A. MCF7, B. T47D, C. ZR75 and D. MDA-MB-231 cells. *p<0.05 is considered to be statistically significant.
Comment 2: The reviewer questions the novelty of some of this work, especially with regards to the STS/17b-HSD-1 work, and the published work from our group on OATP expression in MCF-7 and MDA-MB-231.
Response: We agree with the reviewer that clinical expression of STS [1,2]and 17β-HSD-1 [3]has been previously reported. The novelty of this study was to compare the expression of the OATPs among the early and advanced stages (determined by lymph node status) of hormone dependent and independent breast cancer tissues. As STS and 17β-HSD-1 have already been identified as a therapeutic target for hormone dependent breast cancers, we wanted to include them in our study to compare the expression patterns of STS to that of the OATPs. As the expression patterns (i.e. significantly higher expression in hormone dependent breast cancers) are similar between STS and OATPs, this helped establish that similar to STS, OATPs are a potential novel target for hormone dependent breast cancer patients. We have addressed this in the manuscript in the “Introduction” section on page 4: paragraph 2
“While STS and 17β-HSD-1 are currently considered therapeutic targets for ER+ breast cancers, this study helps to elucidate the potential of OATPs as novel molecular targets for breast cancer and provides a better understanding of the intra-tumoral fate of E3S.”
OATP expression has been previously reported by our group in hormone dependent (MCF-7) and hormone independent (MDA-MB-231, MDA-MB-468 and MDA/LLC-435) breast cancer cells. However, expression of OATPs had not been previously studied in clinical breast tumour tissues. Additionally, this study includes expression of OATPs in T47D and ZR75, two hormone dependent breast cancer cells that had not been previously investigated. Thisfurther confirms that expression of OATPs (i.e. OATP1A2, OATP2B1, OATP3A1 and OATP4A1) is indeed significantly higher in the hormone dependent breast cancer cells as compared to the hormone independent cells. Figure 7 of the manuscript (as shown below) demonstrates the significantly higher expression of the OATPs and STS in the hormone dependent cells, thereby supporting the use of these cells as a surrogate for conducting functional studies.
Figure 7: Immunoblot and densitometric analysis of OATP transporters and STS enzyme in HR+ and HR- breast cancer cells. Protein expression of OATP1A2 (A), OATP3A1 (B), OATP4A1 (C) and STS (D) was determined in HR+ (i.e. MCF-7, T47D, ZR-75) and HR- (i.e.MD-MB-231) breast cancer cells applying standard western blot analysis as described in the Material and Methods section Results of the densitometric analysis are expressed as mean ± SD of three separate experiments (1: positive control; 2: MDA-MB-231; 3: MCF-7; 4: ZR-75; 5: T47-D). *** p<0.001, ** p<0.01 and *p<0.05 are considered to be statistically significant.
Comment 3:Overall, the article results are very descriptive and the relative function of the OATP in hormone-dependent and - independent is not examined. It would have been very interesting to have done functional uptake studies in the various cell lines whilst transiently/stably knocking down specific OATPs to examine the functional relevance of the various OATP/BCRP/MRP1 in E3S influx/efflux in breast cancer cell lines.
Response:The function of the OATPs were compared among the hormone dependent (MCF-7, T47D and ZR-75) and independent (MDA-MB-231) breast cancer cells (as shown in Figure 8) and specificity of OATP mediated E3S uptake was observed in the hormone dependent breast cancer cells. We agree with the reviewer that it would be of additional value to understand E3S transport kinetics for each specific OATP isoform that were investigated. However, the scope of this study was primarily to determine the differences in clinical expression of OATPs in tissues obtained from hormone dependent and independent breast cancer patients, and determine the level of OATP expression specifically in the tumor cells. If availability of additional human breast cancer tissues is possible, in the future, we could conduct knock down experiments for each of the OATPs in the breast cancer cells and tissues.
Comment 4:Furthermore, with regards to the STS data, it is widely known that protein levels of STS do not necessarily correlate to activity, and therefore STS activity studies (on both tissue sections and cell lines) would have been more informative. As little is known about what regulates STS and 17b-HSD-1 activity, with some thoughts suggesting perhaps post-translational modifications might be involved, the immunohistochemical/WB, although of some interest, should be backed up with enzyme activity assays.
Response:STS inhibitor, STX64 was used to compare E3S accumulation in the breast cancer cells in the presence or absence of STS activity. Increased cellular accumulation of E3S in the presence of STX64 suggests therole of STS in intra-cellular metabolism of E3S (as shown in Figure 8). As E3S is lipophobic, unlike estrone or estradiol, it is unable to diffuse out of the cell membrane. We agree with the reviewers that protein expression is not always reflective of function. Hence, we conducted cellular assays in presence of STS inhibitor.
While it will be interesting to further understand the regulation of STS and 17β-HSD-1, we believe that this aspect will require extensive additional experimental work and is beyond the scope of this study.
Comment 5:The authors do not fully explain why addition of STX64 (Irusostat) results in an increase in E1S-uptake. From my understanding, inhibition of STS will block E3S de-sulfation, leading to a greater accumulation of intracellular E1S, as this is lipophobic. Do these results therefore imply that BCRP/MRP1 are not effluxing E1S? Again, some functional studies, perhaps by knocking-down BCRP/MRP1, would have been useful.
Response: We thank the reviewer for this comment. He/sheappreciates the rationale for using STX64. As it is an inhibitor for STS activity, increased cellular accumulation of E3S is observed in presence of STX64.
We planned on using transport inhibitors for BCRP/MRP-1 in presence of STX64 to delineate the role of the efflux transporters, unfortunately the challenge isthat the transport inhibitors used for inhibiting BCRP and MRP transport[i.e. (3S,6S,12aS)-1,2,3,4,6,7,12,12a-Octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1′,2′:1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester(Ko143), N-(4-[2-(1,2,3,4-Tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide(GF120918, elacridar) or 3-[[[3-[(1E)-2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]propanoic acid (MK571)], are also inhibitors for OATP transport. Hence in the presence of BCRP/MRP inhibitors, cellular uptake of E3S was low and non-specific and the data was inconclusive.
This has been addressed in the manuscriptin the “Discussion” section on page 11 paragraph 1
“We acknowledge that the tumoral fate of E3S could be better understood if the functional role of the efflux transporters could also be established. However, cross reactivity between the inhibitors for BCRP, MRP-1 and OATPs make it technically challenging to ensure OATP mediated cellular uptake in the presence of BCRP and MRP-1 transport inhibitors.”
Comment 6:Finally, there are various typos within the document, and a lack of consistency regarding English/American language (estrone and sulphate).
Response:We thank the reviewer for pointing this out. We have now conductrd a very thorough review of the spelling of the text andthroughout the document we have now maintained consistency in using “estrone” and “sulphate/sulphatase”.
Reference List
1. Nakata T, Takashima S, Shiotsu Y, Murakata C, Ishida H, Akinaga S, Li PK, Sasano H, Suzuki T, Saeki T (2003) Role of steroid sulfatase in local formation of estrogen in post-menopausal breast cancer patients. J Steroid Biochem Mol Biol 86: 455-460. S0960076003003571 [pii].
2. Suzuki T, Miki Y, Nakata T, Shiotsu Y, Akinaga S, Inoue K, Ishida T, Kimura M, Moriya T, Sasano H (2003) Steroid sulfatase and estrogen sulfotransferase in normal human tissue and breast carcinoma. J Steroid Biochem Mol Biol 86: 449-454. S096007600300356X [pii].
3. Marchais-Oberwinkler S, Henn C, Moller G, Klein T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, Xu K, Frotscher M, Hartmann RW, Adamski J (2011) 17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol 125: 66-82. S0960-0760(10)00397-3 [pii];10.1016/j.jsbmb.2010.12.013 [doi].
4. Kis O, Zastre JA, Hoque MT, Walmsley SL, Bendayan R (2013) Role of drug efflux and uptake transporters in atazanavir intestinal permeability and drug-drug interactions. Pharm Res 30: 1050-1064. 10.1007/s11095-012-0942-y [doi].