CURRICULUM VITAE

(June, 2003)

Rochelle Easton Esposito

Professor, Department of Molecular Genetics and Cell Biology

University of Chicago, 920 East 58th St., Chicago, Illinois 60637

Tel:773-702-8046 Fax: 773-702-8093

E-mail:

Education:1958-1962Undergraduate: B.S., Brooklyn College, Brooklyn, New York

1962-1967Graduate: Ph.D., Department of Genetics, University of Washington, Seattle

Thesis: Genetic Recombination in Synchronized Cultures of Saccharomycescerevisiae

Advisor: H.L. Roman

1967-1968Postgraduate: Postdoctoral Fellow, Mol. Biol. Lab., University of Wisconsin-Madison

Advisor: H.O. Halvorson

Professional

Experience:1969-1970Assistant Professor: Collegiate Division of Biology, University of Chicago

1970-1975Assistant Professor: Dept. of Biology, University of Chicago

1975-1982Associate Professor: Dept. of Biology, University of Chicago

1982-1984Professor: Dept. of Biology, University of Chicago

1984-presProfessor: Dept. of Molecular Genetics and Cell Biology, University of Chicago

1988-1997Director, NRSA Genetics and Regulation Training Grant, University of Chicago

1992-2002Chair, Committee on Genetics, University of Chicago

1996-2000Co-Director, Office of Basic Science and Graduate Affairs, University of Chicago

Honors &

Awards: 1962-1967NIH Predoctoral Genetics Traineeship

1967-1968NIH Postdoctoral Fellowship

1976-1977NSF-CNRS Exchange of Scientists Fellowship

1983-1986Treasurer, Genetics Society of America

1995-1996Vice-President, Genetics Society of America

1996-1997President, Genetics Society of America

1998-presFellow, American Society of Microbiology

2003American Academy of Arts and Sciences

Professional

Activities:1970, 1971Visiting Scholar, Dept. of Genetics, University of Washington, Seattle (summers)

1975-1976Visiting Scholar, Universite de Paris-Sud, Orsay, France

1973-1980Editorial Board of GENETICS

1978-1981Member, NIH Genetic Basis of Disease Committee

1981-2000Coordinator, Midwest Yeast Club

1981-1983Chairperson, GSA, VI International Congress of Genetics Travel Committee

1982-1986Member, NIH Biomedical Sciences Study Section

1986-1989Co-Chair, National Committee for Yeast Genetics and Molecular Biology

1987-1989Chairperson, NIH Biomedical Sciences Study Section

1987-1990Chairperson, Genetics Society of America Affiliate Groups Committee

1989Co-Organizer, ASCB, Chromosome Structure and Segregation

1991-1993Member, NIH Genome Research Review Committee

1991NIGMS Council, ad hoc

1991, 1995Co-Organizer, International Conference on Meiosis, Obertraun, Austria

1993Chairperson, GSA Nominations Committee

1996-1998Member, Joint Steering Committee for Public Policy

1996-1997Member, NSF Microbial Genetics Panel

1996-2001World Book Science Year Editorial Advisory Board

1997-presExecutive Producer, Conversations in Genetics, GSA Video History Project

2001-2002UC Faculty Representative to Federal Demonstration Partnership

Professional

Societies:Genetics Society of America

American Society of Microbiology

American Society for Cell Biology

Research Interests:

Genetic control of meiosis; genetic recombination; chromosome segregation;

regulation of gene expression; yeast genetics

Meiosis plays a central role in the sexual reproduction of nearly all eukaryotes. The major genetic events that occur during its two cell divisions are critical for generating genetic diversity and producing offspring with normal chromosome numbers. The long-range objectiveof our research program is to understand the genetic mechanisms that govern meiotic development and coordinate a complex series of events into a successful developmental pathway. Our approach is to genetically identify and determine the structure, function, and regulation of selected meiosis-specific genes required for recombination, chromosome segregation and spore formation, and to use these genes to uncover critical regulatory functions that specify the orderly progression of meiotic events. Of particular interest is the relationship between meiotic and mitotic cell division controls, and the extent to which they interact. The unicellular eukaryote, Saccharomyces cerevisiae, is utilized as a model system The experimental program involves: 1) Analysis of the specific functions of selected meiotic genes in controlling exchange, segregation, and spore formation. 2) DNA array analysis of meiosis-specific expression and characterization of key positive and negative regulators controlling the meiotic transcription program. 3) The genetic basis of commitment to meiosis.

Publications:

1. Esposito, R.E. and R. Holliday. 1964. The effect of 5-fluorodeoxyuridine on genetic replication and mitotic crossing over in synchronized cultures of Ustilagomaydis. Genetics 50:1009-1017.

2. Esposito, R.E. 1968. Genetic recombination in synchronized cultures of Saccharomycescerevisiae. Genetics 59:191-210.

3. Esposito, M.S. and R.E. Esposito. 1969. The genetic control of sporulation in Saccharomyces I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics 61:79-89.

4. Esposito, M.S., R.E. Esposito, M. Arnaud and H.O. Halvorson. 1969. Acetate utilization and macromolecular synthesis during sporulation of yeast. J. Bact. 100:180-186.

5. Esposito, M.S., R.E. Esposito, M. Arnaud and H.O. Halvorson. 1970. Conditional mutants of meiosis in yeast. J. Bact. 104:202-210.

6. Esposito, R.E., N. Frink, P. Bernstein and M.S. Esposito. 1972. The genetic control of sporulation in Saccharomyces. II. Dominance and complementation of mutants of meiosis and spore formation. Mole. Gen. Genet. 114:241-248.

7. Esposito, M.S. and R.E. Esposito. 1973. Genetics and physiology of meiosis and sporulation in Saccharomycescerevisiae. In: Regulation de la sporulation microbienne, Coll. International. du C.N.R.S. Gif-sur-Yvette, No 227: 135-137.

8. Pinon, R., Y. Salts, G. Simchen, M. Esposito, R.E. Esposito, T. Petes, W. Fangman, B. Byers and H.L. Roman. 1973. Molecular studies of meiosis in Saccharomycescerevisiae. In: Chromosome Today, Suppl. to Heredity 4:77-84.

9. Esposito, M.S. and R.E. Esposito. 1974. Genes controlling meiosis and spore formation in yeast. Genetics 78:215-225.

10. Esposito, M.S. and R.E. Esposito and P.B. Moens. 1974. Genetic analysis of two-spored asci produced by the spo3 mutant of Saccharomyces. Molec. Gen. Genet. 135:91-95.

11. Esposito, R.E., D.J. Plotkin and M.S. Esposito. 1974. The relationship between genetic recombination and commitment to chromosomal segregation at meiosis. In: Mechamisms of Recombination. Edited by R.F. Gress. pp. 277-285. Plenum Press, New York.

12. Esposito, R.E. and M.S. Esposito. 1974. Genetic recombination and commitment to meiosis in Saccharomyces. Proc. Natl. Acad. Sci. (USA) 71:3172-3176.

13. Moens, P.B., R.E. Esposito and M.S. Esposito. 1974. Aberrant nuclear behavior at meiosis and anucleate spore formation by sporulation-deficient (spo) mutants of Saccharomycescerevisiae. Exp. Cell Res. 83:166-174.

14. Esposito, M.S., M. Bolotin-Fukuhara and R.E. Esposito. 1975. Anti-mutator activity during mitosis by a meiotic mutant of yeast. Molec. Gen. Genet. 139:9-18.

15. Esposito, M.S. and R.E. Esposito. 1975. Mutants of meiosis and ascospore formation. Methods in Cell Biology 9:303-326.

16. Haber, J.E., M.S. Esposito, P.T. Magee and R.E. Esposito. 1975. Current trends in the genetic and biochemical study of yeast sporulation. In: Spores. Edited by P. Gerhardt, R.N. Costilow and H. Sadoff. Vol. VI:132-137, Am. Soc. Microbiol., Washington.

17. Jacobson, G., R. Pinon, R.E. Esposito and M.S. Esposito. 1975. Single-strand sissions of chromosomal DNA during commitment to recombination at meiosis. Proc. Natl.Acad. Sci. (USA) 72:1887-1891.

18. Baker, B., A.T.C. Carpenter, M.S. Esposito, R.E. Esposito and L. Sandler. 1976. The genetic control of meiosis. Ann. Rev. Genetics. Vol. 10:53-134.

19. Moens, P.B., M. Mowat, M.S. Esposito and R.E. Esposito. 1977. Meiosis in a temperature-sensitive DNA synthesis mutant and in an apomictic yeast strain (Saccharomycescerevisiae). Phil. Trans. R. Soc. Lond. B. 277:351-358.

20. Rothstein, R.J., R.E. Esposito and M.S. Esposito. 1977. The effect of ochre suppression on meiosis and ascospore formation in Saccharomyces. Genetics 85:35-54.

21. Esposito, M.S. and R.E. Esposito. 1978. Gene conversion, paramutation and controlling elements: a treasure of exceptions. In: Cell Biology, A Comprehensive Treatise. Edited by D.H. Prescott and L. Goldstein. Vol. 1, pp. 59-92. Academic Press, New York.

22. Esposito, M.S. and R.E. Esposito. 1978. Aspects of the genetic control of meiosis and ascospore development inferred from the study of spo (sporulation-deficient) mutants of Saccharomycescerevisiae. Biologie Cellulaire 33:93-102.

23. Malone, R.E. and R.E. Esposito. 1980. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc. Natl. Acad. Sci. (USA) 77:503-507.

24. Klapholz, S. and R.E. Esposito. 1980a. Isolation of spo12-1 and spo13-1 from a natural variant of yeast that undergoes a single meiotic division. Genetics 96:567-588.

25. Klapholz, S. and R.E. Esposito. 1980b. Recombination and chromosome segregation during the single division meiosis in spo12-1 and spo13-1 diploids. Genetics 96:589-611.

26. Malone, R.E. and R.E. Esposito. 1981. Recombinationless meiosis in Saccharomycescerevisiae. Mol. Cell. Biol. 1:89-101.

27. Esposito, R.E. and S. Klapholz. 1982. Meiosis and ascospore development. In: The Molecular Biology of the Yeast Saccharomyces. Edited by J.N. Strathern, E.W. Jones and J.R. Broach. Vol. 1: pp. 211-287. Cold Spring Harbor Laboratorories Press, New York.

28. Klapholz, S. and R.E. Esposito. 1982. A new mapping procedure for whole chromosome linkage utilizing a recombination-deficient sporulation-defective mutant of yeast. Genetics 100:387-412.

29. Klapholz, S. and R.E. Esposito. 1982. Chromosomes XIV and XVII of Saccharomycescerevisiae constitute a single linkage group. Mol. Cell. Biol. 2;1399-1409.

30. Wagstaff, J.E., S. Klapholz, and R.E. Esposito. 1982. Meiosis in haploid yeast. Proc.Natl. Acad. Sci. (USA) 79:2986-2990.

31. Klapholz, S., C.S. Waddell and R.E. Esposito. 1985. The role of the SPO11 gene in meiotic recombination in yeast Genetics 110:187-216.

32. Wagstaff, J., S. Klapholz, C.S. Waddell, L. Jensen, and R.E. Esposito. 1985. Meiotic exchange within and between chromosomes require a common Rec function in yeast. Mol. Cell. Biol. 5:3532-3544.

33. Wang, H.-T., S. Frackman, J. Kowalisyn, R.E. Esposito and R. Elder. 1987. Developmental regulation of SPO13, a gene required for separation of homologous chromosomes at meiosis I. Mol. Cell. Biol. 7: 1425-1433.

34. Atcheson, C., B. DiDomenico, S. Frackman, R. E. Esposito, and R. Elder. 1987. Isolation,DNA sequence and regulation of a meiosis-specific eucaryotic recombination gene. Proc. Natl. Acad. Sci. (USA) 84: 8035-8039.

35. Gottlieb, S., and R. E. Esposito. 1989. A new role for SIR2: A yeast transcriptional silencer gene suppresses recombination in rDNA. Cell 56: 771-776.

36. Gottlieb, S., Wagstaff, J., and R. E. Esposito. 1989. Evidence for two pathways of intrachromosomal recombination in yeast. Proc. Natl. Acad. Sci. (USA) 86: 7072-7076.

37. Strich, R. S., M. Slater, and R. E. Esposito. 1989. Identification of negative regulation genes that govern the expression of early meiotic genes. Proc. Natl. Acad. Sci. (USA) 86: 10018-10012.

38. Buckingham, L. E., H-T. Wang, R. T. Elder, R. M. McCarroll, M. R. Slater and R. E. Esposito. 1990. Nucleotide sequence and promoter analysis of SPO13, a meiosis-specific gene of Saccharomycescerevisiae. Proc. Natl. Acad. Sci. (USA) 87:9406-9410.

39. Esposito, R. E., M. Dresser and M. Breitenbach. 1991. Identifying sporulation genes, visualizing synaptonemal complexes and large-scale spore and spore wall purification. Methods in Enzymology. 194:110-131.

40. Videl, M., R. Strich, R.E. Esposito and R.F. Gaber. 1991. RPD1/SIN3/UME4 is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11: 6306-6316.

41. Honigberg, S.M., C. Conicella and R.E. Esposito. 1992 Commitment to meiosis in Saccharomyces cerevisiae: involvement of the SPO14 gene. Genetics, 130: 703-716.

42. Surosky, R. and R.E. Esposito. 1992. Early meiotic messages are highly unstable in Saccharomycescerevisiae. Mol. Cell. Biol. 12: 3948-3958.

43. Honigberg, S., McCarroll, R.M., and R.E. Esposito. 1993 Regulatory mechanisms in meiosis. Current Opinions in Cell Biology 5: 219-225.

44. Atcheson, C., and R.E. Esposito. 1993 Meiotic recombination in yeast. Current Opinions in Genetics and Development 3: 736-744.

45. Esposito, R.E., 1993 Humble Beginings. in, The Early Days of Yeast Genetics, Eds. M. Hall and P. Linder, Cold Sring Harbor Press, N.Y., 417-433.

46. Strich, R., Surosky, R.T. Steber, C, Dubois, E., Messenguy, F., and R.E. Esposito. 1994 UME6 is a key regulator of nitrogen repression and meiotic development. Genes and Development 8: 796-810.

47. Surosky, R.T., Strich, R. and R.E. Esposito. 1994 The yeast UME5 gene regulates the stability of meiotic mRNAs in response to glucose. Mol. Cell. Biol. 14: 3446-3458.

48. Honigberg, S.M., and R.E. Esposito. 1994 Reversal of cell determination in yeast meiosis: post-commitment arrest allows return to mitotic growth. Proc. Natl Acad. Sci. (USA) 91: 6559-6563.

49. McCarroll, R.M. and R.E. Esposito. 1994 SPO13 negatively regulates the progression of mitotic and meiotic nuclear division in Saccharomycescerevisiae. Genetics 138:47-60.

50. Anderson, S., C. Steber, R.E. Esposito and J. Coleman 1995. UME6, a negative regulator of meiosis in S. cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster which binds the URS1 DNA sequence in a Zinc-dependent manner. Protein Struc. 4:1832-1843.

51. Steber, C. and R.E. Esposito 1995. Control of meiotic development by the UME6 regulatory switch. Proc. Natl. Acad. Sci. (USA) 92; 12490-12494.

52. Tevzadze, G., A.R. Mushegian, and R.E. Esposito 1996. The SPO1 gene product required for meiosis in yeast has a high similarity to phospholipase B enzymes . Gene 177: 253-255.

53. Kupiec, M. Byers, B. Esposito, R.E., and A.P. Mitchell 1996. Meiosis and sporulation in Saccharomyces cerevisiae. In., The Molecular and Cellular Biology of the Yeast Saccharomyces. Vol 3:889-1036. Eds, E.W. Jones, J.R. Pringle, and J.R. Broach, Cold Spring Harbor Laboratories Press, New York.

54. Fritze, C.E., K. Verschueren, R. Strich and R.E. Esposito 1997. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J. 16: 6495-6509.

55. Tevzadze, G., H. Swift and R.E. Esposito 2000. SPO1, a phospholipase B homolog, is specifically required for spindle pole body duplication during meiosis in Saccharomyces cerevisiae. Chromosoma 109: 72-85.

56. Rutkowski, L.H., and R.E. Esposito 2000. A novel allele of spo13 reveals a role for recombination in promoting reductional segregation during meiosis in Saccharomyces cerevisiae. Genetics 155: 1607-1621.

57. Primig, M., R. Williams, E. Winzeler, G. Tevzadze, A. Conway, S. Y. Hwang, R. Davis and R.E. Esposito 2000. The core meiotic transcriptome in budding yeast. Nature Genetics 26: 415-423.

58. Washburn, B.K. and R.E. Esposito 2001. Identification of the Sin3 binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol 21: 2057-2069.

59. Rabitsch, K.P., A. Toth, M. Galova, A. Schleiffer, G. Schaffner, E. Aigner, C. Rupp, A.M. Penkner, A.C. Moreno-Borchart, M. Primig, R.E. Esposito, F. Klein, M. Knop, K. Nasmyth. 2001. A screen for genes required for meiosis and spore formation based on whole-genome expression. Current Biology 11: 1001-1009.

60. Williams, R., M. Primig, B. Washburn, E. Winzeler, M. Bellis, C. Sarrauste de Menthiere, R. Davis and R.E. Esposito 2002 The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proc Natl Acad Sci U S A. 2002 99:13431-13436.