1. The owner of a football team claims that the average attendance at home games is over 3000, and he is therefore justified in moving the team to a city with a larger stadium. Assuming that a hypothesis test of the claim has been conducted and that the conclusion is failure to reject the null hypothesis, state the conclusion in non-technical terms.

A. There is sufficient evidence to support the claim that the mean attendance is greater than 3000.
B. There is sufficient evidence to support the claim that the mean attendance is equal to 3000.
C. There is not sufficient evidence to support the claim that the mean attendance is greater than 3000.
D. There is not sufficient evidence to support the claim that the mean attendance is less than 3000.

2. A two-tailed test is conducted at the 0.10 significance level. What is the P-value required to reject the null hypothesis?

A. Greater than or equal to .010
B. Greater than or equal to 0.05
C. Less than or equal to 0.10
D. Less than or equal to 0.05

3. A psychologist claims that more than 29 percent of the professional population suffers from problems due to extreme shyness. Assuming that a hypothesis test of the claim has been conducted and that the conclusion is failure to reject the null hypothesis, state the conclusion in non-technical terms.

A. There is sufficient evidence to support the claim that the true proportion is less than 29 percent.
B. There is not sufficient evidence to support the claim that the true proportion is greater than 29 percent.
C. There is sufficient evidence to support the claim that the true proportion is equal to 29 percent.
D. There is sufficient evidence to support the claim that the true proportion is greater than 29 percent.

4. In 1990, the average duration of long-distance telephone calls originating in one town was 9.4 minutes. A long-distance telephone company wants to perform a hypothesis test to determine whether the average duration of long-distance phone calls has changed from the 1990 mean of 9.4 minutes. The mean duration for a random sample of 50 calls originating in the town was 8.6 minutes. Does the data provide sufficient evidence to conclude that the mean call duration, µ, is different from the 1990 mean of 9.4 minutes? Perform the appropriate hypothesis test using a significance level of 0.01. Assume that= 4.8 minutes.

A. With a z of -1.2 there is sufficient evidence to conclude that the mean
value has changed from the 1990 mean of 9.4 minutes.
B. With a P-value of 0.2302 there is not sufficient evidence to conclude
that the mean value is less than the 1990 mean of 9.4 minutes.
C. With a P-value of 0.2302 there is sufficient evidence to conclude that
the mean value is less than the 1990 mean of 9.4 minutes.
D. With a z of –1.2 there is not sufficient evidence to conclude that the
mean value has changed from the 1990 mean of 9.4 minutes.

5. A two-tailed test is conducted at the 5% significance level. Which of the z-scores below is the smallest one that leads to rejection of the null hypothesis?

A. 1.12
B. 1.48
C. 1.84
D. 2.15

6. A consumer advocacy group claims that the mean amount of juice in a 16
ounce bottled drink is not 16 ounces, as stated by the bottler.
Determine the null and alternative hypotheses for the test described.

A.
H0: µ = 16 ouncesHa: µ < 16 ounces
B.
H0: µ16 ouncesHa: µ = 16 ounces
C.
H0: µ = 16 ouncesHa: µ > 16 ounces
D.
H0: µ = 16 ouncesHa: µ16 ounces

7. A nationwide study of American homeowners revealed that 65% have one or more lawn mowers. A lawn equipment manufacturer, located in Omaha, feels the estimate is too low for households in Omaha. Find the P-value for a test of the claim that the proportion with lawn mowers in Omaha is higher than 65%. Among 497 randomly selected homes in Omaha, 340 had one or more lawn mowers. Use Table 5.1 to find the best answer.

A. 0.0559
B. 0.1118
C. 0.0252
D. 0.0505

8. The principal of a middle school claims that annual incomes of the families of the seventh-graders at his school vary more than the annual incomes of the families of the seventh-graders at a neighboring school, which have variation described by=$13,700. Assume that a hypothesis test of the claim has been conducted and that the conclusion of the test was to reject the null hypothesis. Identify the population to which the results of the test apply.

A. The current seventh graders at the principal’s school
B. Seventh graders’ families at the school with a standard deviation of $13,700
C. All of the families of the class of seventh graders at the principal’s school
D. All seventh graders’ families

9. A manufacturer claims that the mean amount of juice in its 16 ounce bottles is 16.1 ounces. A consumer advocacy group wants to perform a hypothesis test to determine whether the mean amount is actually less than this. The mean volume of juice for a random sample of 70 bottles was 15.94 ounces. Do the data provide sufficient evidence to conclude that the mean amount of juice for all 16-ounce bottles, µ, is less than 16.1 ounces? Perform the appropriate hypothesis test using a significance level of 0.10. Assume that= 0.9 ounces.

A.
The z of1.49provides sufficient evidence to conclude that the mean amount of juice is less than 16.1 oz.
B.
The z of1.49does not provide sufficient evidence to conclude that the mean amount of juice is less than 16.1 oz.
C.
The z of0.1778does not provide sufficient evidence to conclude that the mean amount of juice is less than 16.1 oz.
D.
The z of0.1778provides sufficient evidence to conclude that the mean amount of juice is less than 16.1 oz.

10. At one school, the mean amount of time that tenth-graders spend watching television each week is 18.4 hours. The principal introduces a campaign to encourage the students to watch less television. One year later, the principal wants to perform a hypothesis test to determine whether the average amount of time spent watching television per week has decreased.
Formulate the null and alternative hypotheses for the study described.

A.
Ho: µ = 18.4 hoursH: µ18.4 hours
B.
Ho: µ = 18.4 hoursH: µ < 18.4 hours
C.
Ho: µ18.4 hoursH: µ < 18.4 hours
D.
Ho: µ = 18.4 hoursH: µ > 18.4 hours

11. A study of a brand of “in the shell peanuts” gives the following results:

A significant event at the 0.01 level is a fan getting a bag with how many peanuts?

A. 30 peanuts
B. 25 or 30 peanuts
C. 25 or 55 peanuts
D. 25 peanuts

12. A right-tailed test is conducted at the 5% significance level. Which of the following z-scores is the smallest one in absolute value that leads to rejection of the null hypothesis?

A. 1.61
B. 1.85
C. -1.98
D. -2.06

13. A skeptical paranormal researcher claims that the proportion of Americans that have seen a UFO is less than 1 in every one thousand. State the null hypothesis and the alternative hypothesis for a test of significance.

A.
H0: p = 0.001Ha: p > 0.001
B.
H0: p = 0.001Ha: p < 0.001
C.
H0: p > 0.001Ha: p = 0.001
D.
H0: p < 0.001Ha: p = 0.001

14. A two-tailed test is conducted at the 5% significance level. What is the left tail percentile required to reject the null hypothesis?

A. 97.5%
B. 5%
C. 2.5%
D. 95%

15. A poll of 1,068 adult Americans reveals that 52% of the voters surveyed prefer the Democratic candidate for the presidency. At the 0.05 significance level, test the claim that more than half of all voters prefer the Democrat.

A. Reject the null hypothesis. Conclude that there is insufficient evidence that more than half of all voters prefer Democrats.
B. Do not reject the null hypothesis. Conclude that there is sufficient evidence that more than half of all voters prefer Democrats.
C. Reject the null hypothesis. Conclude that there is sufficient evidence that more than half of all voters prefer Democrats.
D. Do not reject the null hypothesis. Conclude that there is insufficient evidence that more than half of all voters prefer Democrats.

16. The owner of a football team claims that the average attendance at home games is over 4000, and he is therefore justified in moving the team to a city with a larger stadium. Assume that a hypothesis test of the claim has been conducted and that the conclusion of the test was to reject the null hypothesis. Identify the population to which the results of the test apply.

A. All games played by the team in question in which the attendance is over 4000
B. All future home games to be played by the team in question
C. All home games played by the team in question
D. None of the populations given are appropriate

17. In 1990, the average duration of long-distance telephone calls originating in one town was 9.3 minutes. A long-distance telephone company wants to perform a hypothesis test to determine whether the average duration of long-distance phone calls has changed from the 1990 mean of 9.3 minutes. Formulate the null and alternative hypotheses for the study described.

A.
Ho: µ = 9.3 minutesH: µ < 9.3 minutes
B.
Ho: µ = 9.3 minutesH: µ > 9.3 minutes
C.
Ho: µ = 9.3 minutesH: µ9.3 minutes
D.
Ho: µ9.3 minutesH: µ = 9.3 minutes

18. A supplier of DVDs claims that no more than 1% of the DVDs are defective. In a random sample of 600 DVDs, it is found that 3% are defective, but the supplier claims that this is only a sample fluctuation. At the 0.01 level of significance, test the supplier’s claim that no more than 1% are defective.

A. Do not reject the null hypothesis and conclude that there is evidence to support the claim that more than 1% of the DVDs are defective.
B. Reject the null hypothesis and conclude that there is insufficient evidence to support the claim that more than 1% of the DVDs are defective.
C. Do not reject the null hypothesis and conclude that there is insufficient evidence to support the claim that more than 1% of the DVDs are defective.
D. Reject the null hypothesis and conclude that there is sufficient evidence to support the claim that more than 1% of the DVDs are defective

19. In the past, the mean running time for a certain type of flashlight battery has been 8.0 hours. The manufacturer has introduced a change in the production method and wants to perform a hypothesis test to determine whether the mean running time has increased as a result. The hypotheses are:

H0: µ= 8.0 hours

Ha: µ> 8.0 hours

Explain the meaning of a Type II error.

A. Concluding that µ > 8.0 hours when in fact µ > 8.0 hours
B. Failing to reject the hypothesis that µ = 8.0 hours when in fact µ >
8.0 hours
C. Concluding that µ > 8.0 hours
D. Failing to reject the hypothesis that µ = 8.0 hours when in fact µ = 8.0 hours

20. In the past, the mean running time for a certain type of flashlight battery has been 9.8 hours. The manufacturer has introduced a change in the production method and wants to perform a hypothesis test to determine whether the mean running time has increased as a result. The hypotheses are:

H0: µ= 9.8 hours

Ha: µ> 9.8 hours

Suppose that the results of the sampling lead to rejection of the null hypothesis. Classify that conclusion as a Type I error, a Type II error, or a correct decision, if in fact the mean running time has not increased.

A. Type I error
B. Type II error
C. Correct decision
D. Can not be determined from this information

21. A simple random sample from a normal distribution is taken in order to obtain a 95% confidence interval for the population mean. If the sample size is 8, the sample mean x̄is 22, and the sample standard deviationsis 6.3, what is the margin of error? Show your answer to 2 decimal places.

A. df = 7; E = 3.3445.38 = 5.6566
B. df = 8; E = 3.3445.38 = 5.6566
C. df = 6; E = 2.3656.38 = 5.769
D. df = 7; E = 2.3656.38 = 5.869

22. One hundred people are selected at random and tested for colorblindness to determine whether gender and colorblindness are independent. The following counts were observed.

Colorblind / Not Colorblind / Total
Male / 7 / 53 / 60
Female / 1 / 39 / 40
Total / 8 / 92 / 100

If gender and colorblindness are independent, find the expected values corresponding to the female combinations of gender and colorblindness.

A. Colorblind Female 4.8; Not Colorblind Female 55.2
B. Colorblind Female 3.2; Not Colorblind Female 36.8
C. Colorblind Female 4.8; Not Colorblind Female 35.2
D. Colorblind Female 3.8; Not Colorblind Female 36.2

23. One hundred people are selected at random and tested for colorblindness to determine whether gender and colorblindness are independent.

The critical value of X2for a 2 x 2 table using a 0.05 significance level is 3.841. If the value of theX2statisticis 4.613, state your conclusion about the relationship between gender and colorblindness.

A.
Reject H0. There is not sufficient evidence to support the claim that gender and colorblindness are related.
B.
Reject H0. There is sufficient evidence to support the claim that gender and colorblindness are related.
C.
Do not Reject H0. There is sufficient evidence to support the claim that gender and colorblindness are related.
D.
Do not Reject H0. There is not sufficient evidence to support the claim that gender and colorblindness are related.

24. A golfer wished to find a ball that would travel more than 180 yards when hit with his 5-iron with a club speed of 90 miles per hour. He had a golf equipment lab test a low compression ball by having a robot swing his club 7 times at the required speed.

Data from this test resulted in a sample mean of 184.2 yards and a sample standard deviation of 5.8 yards. Assuming normality, carry out a hypothesis test at the 0.05 significance level to determine whether the ball meets the golfer’s requirements. Use the partial t-table below.

Area in one tail
0.025 / 0.05
Area in two tails
Degrees of
Freedom
n - 1 / 0.05 / 0.10
6 / 2.447 / 1.943
7 / 2.365 / 1.895
8 / 2.306 / 1.860
9 / 2.262 / 1.833
A.
Reject the null hypothesis. The data do not provide sufficient evidence that the average distance is greater than 180 yards.
B. Reject the null hypothesis. The data do provide sufficient evidence that the average distance is greater than 180 yards.
C. Do not reject the null hypothesis. The data do provide sufficient evidence that the average distance is greater than 180 yards.
D. Do not reject the null hypothesis. The data do not provide sufficient evidence that the average distance is greater than 180 yards.

25. One hundred people are selected at random and tested for colorblindness to determine whether gender and colorblindness are independent. The following counts were observed.

Colorblind / Not Colorblind / Total
Male / 8 / 52 / 60
Female / 2 / 38 / 40
Total / 10 / 90 / 100

Find the value of the X2statistic for the data above.

A. 1.463
B. 1.852
C. 1.947
D. 1.949

26. The margin of error in estimating the population mean of a normal population is E = 9.3 when the sample size is 15. If the sample size had been 25 and the sample standard deviation did not change, would the margin of error be larger or smaller than 9.3?

A. Smaller. E increases as the square root of the sample size gets larger.
B. Smaller. E decreases as the square root of the sample size gets larger.
C. Larger. E decreases as the square root of the sample size gets larger.
D. Larger. E increases as the square root of the sample size gets larger.

27. One hundred people are selected at random and tested for colorblindness to determine whether gender and colorblindness are independent. The following counts were observed.

Colorblind / Not Colorblind / Total
Male / 8 / 52 / 60
Female / 2 / 38 / 40
Total / 10 / 90 / 100

If gender and colorblindness are independent, find the expected values corresponding to the four combinations of gender and colorblindness, and enter them in the following table along with row and column totals.

Colorblind / Not Colorblind / Total
Male
Female
Total
A. Male Colorblind 6.0; Male Not Colorblind 54.0
B. Male Colorblind 7.0; Male Not Colorblind 53.0
C. Male Colorblind 8.0; Male Not Colorblind 52.0
D. Male Colorblind 6.0; Male Not Colorblind 53.0

28. One hundred people are selected at random and tested for colorblindness to determine whether gender and colorblindness are independent.

The critical value ofX2for a 2 x 2 table using a 0.05 significance level is 3.841. If the value of theX2statisticis3.427, state your conclusion about the relationship between gender and colorblindness.

A.
Do not reject H0. There is not sufficient evidence to support the claim that gender and colorblindness are related.
B.
Do not reject H0. There is sufficient evidence to support the claim that gender and colorblindness are related.
C.
Reject H0. There is not sufficient evidence to support the claim that gender and colorblindness are related.
D.
Reject H0. There is sufficient evidence to support the claim that gender and colorblindness are related.

29. One hundred people are selected at random and tested for colorblindness to determine whether gender and colorblindness are independent.

The critical value ofX2for a 2 x 2 table using a 0.05 significance level is 3.841. If the value of the X2statisticis 3.179, state your conclusion about the relationship between gender and colorblindness.

A.
Do not reject H0.
B.
Reject H0.
C.
There is sufficient evidence to support the claim that gender and colorblindness are not related.
D.
There is not sufficient evidence to accept or reject H0.

30. A golfer wished to find a ball that would travel more than 160 yards when hit with his 7-iron with a club speed of 90 miles per hour. He had a golf equipment lab test a low compression ball by having a robot swing his club 8 times at the required speed.

Data from this testresulted in a sample mean of 163.2 yards with a sample standard deviation of 5.8 yards. Assuming normality, carry out a hypothesis test at the 0.05 significance level to determine whether the ball meets the golfer’s requirements. Use the partial t-table below to solve this problem.

Area in one tail
0.025 / 0.05
Area in two tails
Degrees of
Freedom
n - 1 / 0.05 / 0.10
6 / 2.447 / 1.943
7 / 2.365 / 1.895
8 / 2.306 / 1.860
9 / 2.262 / 1.833
A.
Do not reject the null hypothesis. The data do not provide sufficient
evidence that the average distance is greater than 160 yards.
B. Reject the null hypothesis. The data does provide sufficient evidence that the average distance is greater than 160 yards.
C. t= 1.2334; Critical value = 1.992
D. Insufficient information to answer this question.

31. The ______test statistic is for the one-way analysis of variance.

A. P-Value
B. t
C. F
D. p

32. A golfer wished to find a ball that would travel more than 170 yards when hit with his 6-iron with a club head speed of 90 miles per hour. He had a golf equipment lab test a low compression ball by having a robot swing his club 12 times at the required speed. State the null and alternative hypotheses for this test.

A.
H0: µ > 170; Ha: µ = 170
B.
H0: µ < 170; Ha: µ = 170
C.
H0: µ = 170; Ha: µ > 170
D.
H0: µ = 160; Ha: µ > 160

33. Which of the following statements is true?

A.
The t distribution can be used when finding a confidence interval for the population mean whenever the sample size is small.
B. The p distribution can be used when finding a confidence interval for the population mean whenever the sample size is small.
C. The t distribution cannot be used when finding a confidence interval for the population mean whenever the sample size is small.
D. The p distribution cannot be used when finding a confidence interval for the sample mean whenever the sample size is small.

34. A 95% confidence interval for the mean of a normal population is found to be 13.2 < µ < 22.4. What is the margin of error?