Docking and Molecular Dynamics Studies on the Stereoselectivity in the Enzymatic Synthesis of Carbohydrates

Natércia F. Brás, Pedro A. Fernandes, Maria J. Ramos*

REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do

Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

* Corresponding author, E-mail address:

Supporting Information

Table SI-1: Summary of the distances involved in the main interactions established between the carbohydrates and the neighbour aminoacids of the active siteof Exo-1,3-ß-Glycosidase from Candida albicans. These average values were obtained after equilibration of MD simulations. (D= Donor, A=Acceptor)

Residue / Exo-(1,3)-Glucosidase from Candida albicans
Solution 1 / d(Å) / Solution 2 / d(Å) / Solution 3 / d(Å)
Glu27 / COO-↔ HO-C3 (D) / 1.74 / COO- ↔ HO-C3 (D) / 2.56 / COO- ↔ HO-C3 (D) / 1.79
COO- ↔ HO-C4 (D) / 1.66 / COO- ↔ HO-C4 (D) / 1.81 / COO- ↔ HO-C4 (D) / 1.67
Phe144 / Apolar ring ↔ Sugar ring (A) / Apolar ring ↔ Sugar ring (A)
Asp145 / COO- ↔ HO-C6 (D) / 1.92
Asn146 / CO ↔ HO-C3 (D) / 1.99 / NH2 ↔ HO-C3 (D) / 2.87 / NH2 ↔ HO-C3 (D) / 3.08
Glu192 / COO- ↔ HO-C3 (A) / 4.49 / COO- ↔ HO-C3 (A) / 1.71 / COO- ↔ HO-C3 (A) / 2.76
COO- ↔ HO-C4 (A) / 1.66 / COO- ↔ HO-C4 (A) / 2.28
Tyr255 / OH ↔ -OOC (Glu286) / 2.04 / OH ↔ -OOC (Glu286) / 1.96 / OH ↔ -OOC (Glu286) / 1.92
Trp363 / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D)
Water / OH ↔ HO-C6 (A) / 2.00 / OH ↔ HO-C6 (D) / 1.56 / OH ↔ HO-C1 (A) / 2.07

Table SI-2: Summary of the distances involved in the main interactions established between the carbohydrates and the neighbour aminoacids of the active siteof ß-Glucanase from Humicola insolens. These average values were obtained after equilibration of MD simulations. (D= Donor, A=Acceptor)

Residue / β-Glucanase from Humicola insolens
Solution 1 / d(Å) / Solution 2 / d(Å) / Solution 3 / d(Å)
Arg108 / NH2 ↔ OH-C4 (D) / 2.55
Asp173 / COO- ↔ HO-C3 (D) / 1.77 / COO- ↔ O ring (A) / 3.18
Glu197 / COO- ↔ HO-C2 (D) / 2.07 / COO- ↔ HO-C2 (D) / 1.69 / COO- ↔ HO-C2 (D) / 1.84
Asp199 / COO- ↔ HO-C4 (D) / 1.61 / COO- ↔ HO-C6 (D) / 3.51 / COO- ↔ HO-C6 (D) / 2.04
COO- ↔ HO-C6 (D) / 2.33
Glu202 / COO- ↔ HO-C3 (A) / 2.32 / COO- ↔ HO-C6 (A) / 1.64 / COO- ↔ HO-C4 (A) / 2.15
COO- ↔ HO-C4 (A) / 1.60 / COO- ↔ HO (Water) / 2.23 / COO- ↔ HO (Water) / 1.89
Hie209 / NH ↔ OH-C4 (A) / 2.56 / NH ↔ OH-C4 (D) / 3.15
Asn237 / NH2 ↔ HO-C1 (A) / 2.77
Trp356 / Apolar ring ↔ Sugar ring (A) / Apolar ring ↔ Sugar ring (A)
Water / OH ↔ HO-C1 (A) / 1.65 / OH ↔ HO-C1 (A) / 1.48 / OH ↔ HO-C4 (D) / 2.03
Water / OH ↔ HO-C6 (D) / 2.20 / OH ↔ HO-C6 (A) / 2.35

Table SI-3: Summary of the distances involved in the main interactions established between the carbohydrates and the neighbour aminoacids of the active siteof ß(1-3)-Glycosidase from Thermus thermophilus. These average values were obtained after equilibration of MD simulations. (D= Donor, A=Acceptor)

Residue / β(1-3)-Glycosidase from Thermus thermophilus
Solution 1 / d(Å) / Solution 2 / d(Å)
Gln18 / NH2 ↔ HO-C4 (D) / 2.00 / NH2 ↔ HO-C4 (D) / 1.92
Glu164 / COO- ↔ HO-C3 (A) / 1.82
Tyr284 / OH ↔ -OOC (Glu335) / 1.86 / OH ↔ -OOC (Glu335) / 1.89
Glu338 / COO- ↔ HO-C2 (D) / 1.54 / COO- ↔ HO-C2 (D) / 1.56
Trp385 / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D)
Glu392 / COO- ↔ HO-C4 (A) / 1.70 / COO- ↔ HO-C4 (D) / 2.01
COO- ↔ HO-C6 (A) / 2.59

Table SI-4: Summary of the distances involved in the main interactions established between the carbohydrates and the neighbour aminoacids of the active siteofß-Galactosidase from Escherichia coli. These average values were obtained after equilibration of MD simulations. (D= Donor, A=Acceptor)

Residue / β-Galactosidase from Escherichia coli
Solution 1 / d(Å) / Solution 2 / d(Å) / Solution 3 / d(Å)
Asn102 / NH2 ↔ HO-C4 (D) / 2.04 / NH2 ↔ HO-C4 (D) / 3.78 / NH2 ↔ HO-C4 (D) / 3.77
Asp201 / COO- ↔ HO-C4 (D) / 2.34
Asn460 / NH2 ↔ HO-C2 (D) / 1.95 / NH2 ↔ HO-C2 (D) / 1.91 / NH2 ↔ HO-C2 (D) / 1.90
Glu461 / COO- ↔ HO-C3 (A) / 1.68
COO- ↔ HO-C4 (A) / 1.70
Tyr503 / OH ↔ -OOC (Glu525) / 1.84 / OH ↔ COO- (Glu525) / 1.90 / OH ↔ -OOC (Glu525) / 1.84
Lys517 / NH2 ↔ HO-C6 (A) / 1.85
Glu537 / COO- ↔ HO-C2 (D) / 1.62 / COO- ↔ HO-C2 (D) / 1.59 / COO- ↔ HO-C2 (D) / 1.59
Trp568 / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D)
Trp999 / Apolar ring ↔ Sugar ring (D)
Water / OH ↔ HO-C3 (D) / 1.80 / OH ↔ HO-C3 (A) / 1.83

Table SI-5: Summary of the distances involved in the main interactions established between the carbohydrates and the neighbour aminoacids of the active siteofß-Galactosidase from Penicillium sp. These average values were obtained after equilibration of MD simulations. (D= Donor, A=Acceptor)

Residue / β-Galactosidase from Penicillium sp.
Solution 1 / d(Å) / Solution 2 / d(Å) / Solution 3 / d(Å)
Asn140 / NH2 ↔ HO-C4 (D) / 4.11 / NH2 ↔ HO-C4 (A) / 3.89 / NH2 ↔ HO-C4 (D) / 2.72
Glu142 / COO- ↔ HO-C4 (D) / 1.83 / COO- ↔ HO-C6 (D) / 1.70 / COO- ↔ HO-C4 (D) / 1.70
COO- ↔ HO-C6 (D) / 1.71 / COO- ↔ HO-C3 (A) / 2.00 / COO- ↔ HO-C4 (A) / 2.28
Asn199 / NH2 ↔ HO-C2 (D) / 1.93 / NH2 ↔ HO-C2 (D) / 2.94 / NH2 ↔ HO-C2 (D) / 2.73
Tyr261 / OH ↔ -OOC (Glu299) / 1.84 / OH ↔ -OOC (Glu299) / 1.79 / OH ↔ -OOC (Glu299) / 1.94
Glu299 / OH ↔ HO-C2 (D) / 1.64 / OH ↔ HO-C2 (D) / 1.69 / OH ↔ HO-C2 (D) / 1.75
Tyr343 / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D)
Glu807 / COO- ↔ HO-C3 (A) / 1.54
Trp809 / Apolar ring ↔ Sugar ring (A)

Table SI-6: Summary of the distances involved in the main interactions established between the carbohydrates and the neighbour aminoacids of the active siteofß-Glycosidase from Sulfolobus sulfaticuris.These average values were obtained after equilibration of MD simulations. (D= Donor, A=Acceptor)

Residue / β-Glycosidase from Sulfolobus sulfaticuris
Solution 1 / d(Å) / Solution 2 / d(Å) / Solution 3 / d(Å)
Gln20 / CO ↔ HO-C3 (D) / 2.19 / CO ↔ HO-C3 (D) / 1.76
Ans205 / NH2 ↔ HO-C2 (D) / 2.09 / NH2 ↔ HO-C2 (D) / 1.95 / NH2 ↔ HO-C2 (D) / 1.87
Glu206 / COO- ↔ HO-C2 (A) / 1.82 / COO- ↔ HO-C3 (A) / 1.86 / COO- ↔ HO-C6 (A) / 1.59
COO- ↔ HO-C2 (A) / 1.71 / COO- ↔ HO-C4 (A) / 1.76
Tyr320 / OH ↔ -OOC (Glu382) / 1.93 / OH ↔ -OOC (Glu382) / 1.93 / OH ↔ -OOC (Glu382) / 1.88
Glu385 / OH ↔ HO-C2 (D) / 1.55 / OH ↔ HO-C2 (D) / 1.55 / OH ↔ HO-C2 (D) / 1.53
Tyr423 / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D) / Apolar ring ↔ Sugar ring (D)
Glu430 / COO- ↔ HO-C4 (D) / 1.84

Graphic SI-1: RMSD average values (Å) obtained for the backbone of Exo-1,3-ß-Glycosidase from Candida albicans(black) and for the acceptor sugar (grey).

A) Solution 1, B) Solution 2 and C) Solution 3.

Graphic SI-2: RMSD average values (Å) obtained for the backbone of ß-Glucanase from Humicola insolens(black) and for the acceptor sugar (grey).

A) Solution 1, B) Solution 2 and C) Solution 3.

Graphic SI-3: RMSD average values (Å) obtained for the backbone of ß(1-3)-Glycosidase from Thermus thermophilus(black) and for the acceptor sugar (grey).

A) Solution 1 and B) Solution 2.

Graphic SI-4: RMSD average values (Å) obtained for the backbone of ß-Galactosidase from Escherichia coli(black) and for the acceptor sugar (grey).

A) Solution 1, B) Solution 2 and C) Solution 3.

Graphic SI-5: RMSD average values (Å) obtained for the backbone of ß-Galactosidase from Penicillium sp.(black) and for the acceptor sugar (grey).

A) Solution 1, B) Solution 2 and C) Solution 3.

Graphic SI-6: RMSD average values (Å) obtained for the backbone of ß-Glycosidase from Sulfolobus sulfaticuris(black) and for the acceptor sugar (grey).

A) Solution 1, B) Solution 2 and C) Solution 3.

1