Electronic Supplementary Material
SI 1 – Calculation of X, TCDD degradation percentage when 99% of the oil is degraded
The degradation in air, water and soil is assumed to be a first-order kinetic. The concentration of each hydrocarbon fraction Coil is equal to 1% of the initial concentration Ci,oil at time t=t0.01,oil. Thus:
, with kdeg,oil the degradation constant of the oil.
Consequently .
Thus, at t=t0.01,oil, the concentration of TCDD CX,TCDD is equal to X% of the initial concentration of TCDD Ci,TCDD :
, with kdeg,TCDD the degradation constant of TCDD.
Thecalculationwas carried out for each hydrocarbon fraction since the degradation constant changes every time. The table below liststhe X for each environmental compartment.
Tab1TCDD degradation percentage per compartment for each hydrocarbon fraction influence
Air / Water / SoilAliphatic fractions
ECN 11 14 / 37.7% / 33.0% / 18.1%
ECN 14 17 / 32.3% / 52.7% / 31.2%
ECN 17 18 / 29.1% / 67.9% / 43.4%
ECN 18 21 / 26.3% / 82.2% / 57.8%
ECN 21 23 / 23.1% / 94.6% / 76.7%
ECN 23 25 / 20.9% / 98.8% / 89.0%
ECN 25 27 / 18.9% / 99.9% / 96.5%
ECN 27 30 / 16.8% / 100.0% / 99.7%
Aromatic fractions
ECN 10 12 / 28.9% / 11.3% / 5.8%
ECN 12 14 / 27.3% / 20.9% / 11.1%
ECN 14 16 / 25.8% / 36.9% / 20.5%
ECN 16 18 / 24.3% / 59.4% / 36.3%
ECN 18 19 / 23.3% / 77.6% / 52.7%
ECN 19 22 / 22.0% / 94.7% / 76.9%
ECN 22 23 / 20.7% / 99.7% / 94.4%
ECN 23 25 / 19.8% / 100.0% / 99.2%
Olefins / 1,4% / 24,4% / 13,0%
SI 2 – Physico-chemical properties of the 17 hydrocarbon fractions and TCDD
Name / MW / KOW / Koc / KH (25°C) / Pvap(25°C) / Sw(25°C) / kdeg-a / kdeg-w / kdeg-sed / kdeg-slUnits / g.mol-1 / - / L.kg-1 / Pa.m3.mol-1 / Pa / mg.L-1 / d-1 / d-1 / d-1 / d-1
Aliphatic fractions / ECN 11 14 / 1.76E+02 / 4.73E+04 / 3.53E+04 / 5.82E+04 / 3.59E+01 / 1.08E-01 / 8.10E-01 / 4.44E-02 / 1.27E-02 / 4.44E-02
ECN 14 17 / 2.17E+02 / 3.40E+05 / 2.54E+05 / 1.85E+05 / 3.84E+00 / 4.51E-03 / 9.81E-01 / 2.37E-02 / 6.77E-03 / 2.37E-02
ECN 17 18 / 2.45E+02 / 1.26E+06 / 9.45E+05 / 3.92E+05 / 8.66E-01 / 5.41E-04 / 1.11E+00 / 1.56E-02 / 4.46E-03 / 1.56E-02
ECN 18 21 / 2.73E+02 / 4.71E+06 / 3.52E+06 / 8.20E+05 / 1.95E-01 / 6.49E-05 / 1.26E+00 / 1.03E-02 / 2.93E-03 / 1.03E-02
ECN 21 23 / 3.08E+02 / 2.43E+07 / 1.82E+07 / 2.03E+06 / 3.03E-02 / 4.59E-06 / 1.46E+00 / 6.09E-03 / 1.74E-03 / 6.09E-03
ECN 23 25 / 3.35E+02 / 9.06E+07 / 6.77E+07 / 4.16E+06 / 6.83E-03 / 5.51E-07 / 1.63E+00 / 4.01E-03 / 1.15E-03 / 4.01E-03
ECN 25 27 / 3.63E+02 / 3.37E+08 / 2.52E+08 / 8.45E+06 / 1.54E-03 / 6.61E-08 / 1.82E+00 / 2.64E-03 / 7.54E-04 / 2.64E-03
ECN 27 30 / 3.97E+02 / 1.74E+09 / 1.30E+09 / 2.03E+07 / 2.39E-04 / 4.67E-09 / 2.08E+00 / 1.57E-03 / 4.47E-04 / 1.57E-03
Aromatic fractions / ECN 10 12 / 1.45E+02 / 2.67E+03 / 1.99E+03 / 7.81E+01 / 6.02E+00 / 1.12E+01 / 1.12E+00 / 1.48E-01 / 4.24E-02 / 1.48E-01
ECN 12 14 / 1.73E+02 / 9.07E+03 / 6.78E+03 / 1.43E+02 / 1.28E+00 / 1.56E+00 / 1.20E+00 / 7.57E-02 / 2.16E-02 / 7.57E-02
ECN 14 16 / 2.01E+02 / 3.08E+04 / 2.30E+04 / 2.55E+02 / 2.73E-01 / 2.16E-01 / 1.29E+00 / 3.86E-02 / 1.10E-02 / 3.86E-02
ECN 16 18 / 2.29E+02 / 1.05E+05 / 7.83E+04 / 4.45E+02 / 5.83E-02 / 3.00E-02 / 1.37E+00 / 1.97E-02 / 5.62E-03 / 1.97E-02
ECN 18 19 / 2.50E+02 / 2.62E+05 / 1.96E+05 / 6.70E+02 / 1.83E-02 / 6.83E-03 / 1.45E+00 / 1.19E-02 / 3.39E-03 / 1.19E-02
ECN 19 22 / 2.79E+02 / 8.93E+05 / 6.67E+05 / 1.14E+03 / 3.89E-03 / 9.49E-04 / 1.55E+00 / 6.04E-03 / 1.73E-03 / 6.04E-03
ECN 22 23 / 3.07E+02 / 3.04E+06 / 2.27E+06 / 1.93E+03 / 8.30E-04 / 1.32E-04 / 1.65E+00 / 3.08E-03 / 8.80E-04 / 3.08E-03
ECN 23 25 / 3.28E+02 / 7.60E+06 / 5.68E+06 / 2.85E+03 / 2.60E-04 / 3.00E-05 / 1.74E+00 / 1.86E-03 / 5.31E-04 / 1.86E-03
Olefins / 1.89E+02 / 1.14E+05 / 8.51E+04 / 1.03E+05 / 3.70E+01 / 6.81E-02 / 2.80E+01 / 6.34E-02 / 1.81E-02 / 6.34E-02
2.3.7.8-TCDD / 3.22E+02 / 6.31E+06 / 3.16E+06 / 5.05E+00 / 2.00E-07 / 2.00E-04 / 8.32E-02 / 3.85E-03 / 4.28E-04 / 1.93E-03
SI 3 – Exposure factor, toxic and ecotoxiceffect factor and matrices of TCDD from the conventional USEtox model
Tab2matrix of TCDD (day-1)
Receiving compartmentsUrban / Continental / Global
Air / Air / Freshwater / Seawater / Natural soil / Agricultural soil / Air / Freshwater / Ocean / Natural soil / Agricultural soil
Exposure pathway / Inhalation / 4.51E-04 / 1.30E-06 / 0.00 / 0.00 / 0.00 / 0.00 / 1.70E-07 / 0.00 / 0.00 / 0.00 / 0.00
Drinking water / 0.00 / 0.00 / 2.47E-07 / 0.00 / 0.00 / 0.00 / 0.00 / 9.61E-08 / 0.00 / 0.00 / 0.00
Ingestion of exposed produce / 0.00 / 9.32E-05 / 0.00 / 0.00 / 0.00 / 1.93E-16 / 1.22E-05 / 0.00 / 0.00 / 0.00 / 7.43E-17
Ingestion of unexposed produce / 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 2.61E-10 / 0.00 / 0.00 / 0.00 / 0.00 / 1.00E-10
Ingestion of meat / 0.00 / 1.47E-05 / 1.78E-07 / 0.00 / 0.00 / 3.11E-09 / 1.92E-06 / 6.83E-08 / 0.00 / 0.00 / 1.19E-09
Ingestion of dairy products / 0.00 / 2.17E-05 / 2.62E-07 / 0.00 / 0.00 / 3.60E-09 / 2.83E-06 / 1.01E-07 / 0.00 / 0.00 / 1.38E-09
Ingestion of fish / 0.00 / 0.00 / 2.16E-04 / 1.13E-05 / 0.00 / 0.00 / 0.00 / 8.41E-05 / 1.05E-07 / 0.00 / 0.00
Tab3Toxic effect matrix (case/kgintake)
Exposure pathwayInhalation / Ingestion
Toxic effect / Cancer / 4.88E+04 / 4.88E+04
Non-cancer / 0.00E+00 / 0.00E+00
Tab4Ecotoxicityeffect matrix (PAF.m3/kg)
Receiving compartmentsUrban / Continental / Global
Air / Air / Freshwater / Seawater / Natural soil / Agricultural soil / Air / Freshwater / Ocean / Natural soil / Agricultural soil
Freshwater ecosystems / 0 / 0 / 5.55E+06 / 0 / 0 / 0 / 0 / 5.55E+06 / 0 / 0 / 0
SI 4 –Characterization factors for TCDD for the aquatic ecotoxicity impact category without oil and with influencing hydrocarbon fractions for an emission into continental air, freshwater and natural soil
Fig1 Comparison of the values of TCDD CF without oil and minimum and maximum TCDD CF’ influenced by hydrocarbon fractions for three emission compartments for the aquatic ecotoxicity impacts category and ratio of minimum and maximum TCDD CF’ influenced by hydrocarbon fractionsand TCDD CF without oil
SI 5 – Characterization factors for TCDD for eachinfluencing hydrocarbon fraction and TCDD without oil for the aquatic ecotoxicity impact category
SI 6 – Characterization factors for TCDD for eachinfluencing hydrocarbon fraction and TCDD without oil for the human toxicity impact category
SI 7 – Results of the scenario analysis 1 and 2 for the aquatic ecotoxicity impact category
Tab5 - Lowest, highest and mean variations of CF’eco (TCDD with the oil) for the scenario analysis on the degradation constants kdeg of TCDD and the transfer constant of hydrocarbon fractions from non-aerial compartments to aerial compartments
Emission compartment / Scenario 1 / Scenario 2kdeg,a(TCDD) / kdeg,w(TCDD) / kdeg,sl(TCDD) / ki,j with i and j respectively non-aerial and aerial compartments
+50% / +50% / -50% / -50%
Air / [-33% ; -16%] ; mean: -26% / [0.0% ; +2.9%] ; mean: +0.4%
Freshwater / [-33% ; -3.9%] ; mean: -22% / [0.0%; +57%] ; mean: +24%
Natural soil / [-24%; +1.8%] ; mean: -14% / [-41% ; -5.2%] ; mean: -29%
SI 8 – Results of the scenario analysis 3: 1,2,3,6,7,8-HexaCDD as the proxy substance for the PCDD/Fs mixture
Fig2DHxCDD and D’HxCDD values of 1,2,3,6,7,8-HexaCDD relative to the influencing hydrocarbon fraction for an emission into the continental (a) air, (b) freshwater, (c) natural soil compartments. The fractions with the lowest and highest D’ for the aliphatic and aromatic fractions are specified.
Fig3 Comparison of the values of 1,2,3,6,7,8-HexaCDD CF without oil and minimum and maximum 1,2,3,6,7,8-HexaCDD CF’ influenced by hydrocarbon fractions for three emission compartments for the human toxicity impacts category and ratio of minimum and maximum 1,2,3,6,7,8-HexaCDD CF’ influenced by hydrocarbonand 1,2,3,6,7,8-HexaCDDCF without oil
Fig4 Comparison of the values of 1,2,3,6,7,8-HexaCDDCF without oil and minimum and maximum 1,2,3,6,7,8-HexaCDDCF’ influenced by hydrocarbon fractions for three emission compartments for the human toxicity impacts category and ratio of minimum and maximum 1,2,3,6,7,8-HexaCDDCF’ influenced by hydrocarbonand 1,2,3,6,7,8-HexaCDDCF without oil