SUPPLEMENTARY MATERIAL
Enzymatic synthesis of bromo- and chlorocarbazoles and elucidation of their structures by molecular modeling
John Mumbo 1,2,3,4*, Dieter Lenoir1, Bernhard Henkelmann1, Karl-Werner Schramm1,2**
1. Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH),
Molecular EXposomics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
email: * , **
2. Department für Biowissenschaftliche Grundlagen, TUM-Technische Universität München,
Weihenstephaner Steig 23, 85350 Freising, Germany
email: *, **
3. Department of Chemistry, Maseno University, Private Bag, Maseno, Kenya
4. National Environment Management Authority, P.O. Box 67839-00200, Nairobi, Kenya
Supplementary Material
Page Material
S-2 Figure S1. Gas chromatogram of (A) bromocarbazoles and (B) chlorocarbazoles
detected during halogenation of carbazole by chloroperoxidase of Caldariomyces
fumago.
S-3 to S-6 Figure S2 to Figure S5. Mass spectra of mono-, di-, tri- and tetra-bromocarbazoles
S-7 to S-9 Figure S6 to Figure S8. Mass spectra of di-, tri- and tetra-chlorocarbazoles
S-10 Table S1 Substrate concentrations in environmental water samples
S-11 Table S2. Log Kow values of carbazole, bromo- and chlorocarbazoles
A/ /
B
/ /
Fig. S1 Gas chromatograms of bromocarbazoles (A) from left to right and chlorocarbazoles (B) also from left to right. The synthesis followed the same trend with the mono- and dihalogenated carbazoles formed in the 2:2:1 and 1:10:3 reaction ratio treatments while mono-, di-, tri- and tetrahalogenated carbazoles were all formed in 1:1000:50 reaction ratio treatments.
S-1
Fig. S2 Mass spectrum of monobromocarbazole
Fig. S3 Mass spectrum of dibromocarbazole
Fig. S4 Mass spectrum of tribromocarbazole
Fig. S5 Mass spectrum of tetrabromocarbazole
S-1
Fig. S6 Mass spectrum of dichlorocarbazole
Fig. S7 Mass spectrum of trichlorocarbazole
Fig. S8 Mass spectrum of tetrachlorocarbazole
S-1
Table S1 Substrate concentrations in environmental water samples
Substrate / Source / Environmental concentrations (mg/L) / ReferenceCarbazole / Wastewater effluents / 66 to 1080 / Bursey and Pellizzari 1982
Municipal waste water treatment sludge / 0.52 to 2.77 / Constable et al. 1986
Oil / 0.13 to 2.0 / Bakr 2009
Creosote / 9000 / Krone et al. 1986
Bromide / Seawater / 65 to 71 / Flury and Papritz 1993
Chloride / River / 11to 42 / Brooker 1984
Oceans / 19,000 / Stumm and Morgan 1996
Waste water / 30 to 1000 / Metcalf and Eddy 1991
Hydrogen peroxide / Freshwater / 0.001 to 0.109 / Cooper et al. 1989, Moore et al. 1993
seawater / 0.001 to 0.0136 / Moore et al. 1993, Fujiwara et al. 1993
Table S2 Log Kow values of carbazole, bromo- and chlorocarbazoles
Compound / Log Kow / Compound / Log Kow1,3,6,8-tetrabromocarbazole / 6.2 / 1,3,6,8-tetrachlorocarbazole / 5.9
1,3,6-tribromcarbazole / 5.5 / 1,3,6-trichlorocarbazole / 5.3
3,6-dibromocarbazole / 4.8 / 3,6-dichlorocarbazole / 5.4
3-bromocarbazole / 4.4 / 3-chlorocarbazole / 4.3
Carbazole / 3.7
Source: National Centre for Biotechnology Information (NCBI), US National library of medicine
References
Bakr MMY (2009) Occurrence and Geochemical Significance of Carbazoles and Xanthones in Crude Oil from the Western Desert, Egypt. Journal of King Abdulaziz University-Earth Sciences 20(2):127–1259
Brooker M (1984) The behaviour of phosphate, nitrate, chloride and hardness in twelve welsh rivers. Water Research 18(9):1155–1164. doi: 10.1016/0043-1354(84)90232-X
Bursey JT, Pellizzari ED (1982) Analysis of industrial wastewater for organic pollutants in consent decree survey Contract Number 68-03-2867. Athens GA. USEPA Environ. Res. Lab:1–34
Constable TW, Taylor LJ, Rush RJ (1986) The effect of three sludge processing operations on the fate and leachability of trace organics in municipal sludges. Environmental Technology Letters 7(1-12):129–140. doi: 10.1080/09593338609384399
Cooper WJ, Lean DRS, Carey JH (1989) Spatial and Temporal Patterns of Hydrogen Peroxide in Lake Waters. Can. J. Fish. Aquat. Sci 46(7):1227–1231. doi: 10.1139/f89-158
Flury M, Papritz A (1993) Bromide in the Natural Environment: Occurrence and Toxicity. Journal of Environment Quality 22(4):747. doi: 10.2134/jeq1993.00472425002200040017x
Fujiwara K, Ushiroda T, Takeda K, Kumamoto Y, Tsubota H (1993) Diurnal and seasonal distribution of hydrogen peroxide in seawater of the Seto Inland Sea. Geochem. J 27(2):103–115. doi: 10.2343/geochemj.27.103
Krone CA, Burrows DG, Brown DW, Robisch PA, Friedman AJ, Malins DC (1986) Nitrogen-containing aromatic compounds in sediments from a polluted harbor in Puget Sound. Environ. Sci. Technol 20(11):1144–1150. doi: 10.1021/es00153a010
Moore CA, Farmer CT, Zika RG (1993) Influence of the Orinoco River on hydrogen peroxide distribution and production in the eastern Caribbean. J. Geophys. Res 98(C2):2289. doi: 10.1029/92JC02767
Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters, 3rd edn. Environmental science and technology. Wiley, New York, NY
S-1