Supplementary Material

Kinetochore function from the bottom up

Stephen M. Hinshaw and Stephen C. Harrison
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Howard Hughes Medical Institute, 250 Longwood Avenue, Boston, MA 02115, USA.

Table S1 – Ctf19 complex/CCAN proteins

COMPLEX / HUMAN / BUDDING YEAST / FISSION YEAST / HUMAN KNOCKOUT/DOWN / BUDDING YEAST DELETION / FISSION YEAST DELETION / REFERENCES
Nucleosome / CENP-A / Cse4 / cnp1 / Lethal / Lethal / Lethal / [1-3]
CENP-C / Mif2 / cnp3 / Lethal / Lethal / Lethal/very slow growth, suppressed by Fta1 overexpression / [4-6]
CENP-N/Chl4 / CENP-N / Chl4 / mis15 / Lethal / Chromosomal instability / Lethal / [7-9]
CENP-L / Iml3 / fta1 / Lethal / Chromosomal instability / Lethal / [6, 10]
CENP-I/Ctf3 / CENP-I / Ctf3 / mis6 / Lethal / Chromosomal instability / Lethal / [11, 12]
CENP-H / Mcm16 / fta3 / Lethal / Chromosomal instability / Lethal / [7, 13]
CENP-K / Mcm22 / sim4 / Lethal / Chromosomal instability / Lethal after 4-6 divisions / [10, 14, 15]
CENP-M / Lethal / [10]
COMA / CENP-O / Mcm21 / mal2 / Slow-growing / Chromosomal instability / Lethal after 0-5 divisions / [10, 14, 15]
CENP-P / Ctf19 / fta2 / Slow-growing / Chromosomal instability / Lethal / [10, 16, 17]
CENP-Q / Okp1 / fta7 / Slow-growing / Lethal / Lethal / [7, 18, 19]
CENP-U / Ame1 / mis17 / Slow-growing / Lethal / Lethal / [7, 20]
CENP-R / Slow-growing / [18]
CENP-T/Cnn1 / CENP-T / Cnn1 / cnp20 / Lethal / Chromosomal instability / Lethal / [6, 18]
CENP-W / Wip1 / wip1 / Lethal / Chromosomal instability / Lethal/very slow growth / [18, 21]
Nkp1/2 / Nkp1 / fta4 / Lethal / [7]
Nkp2 / cnl2 / Viable / [22]

Table S2 – Phosphorylation at the kinetochore

KINASE / SUBSTRATE / ORGANISM / FUNCTION / REFERENCE
PLK1/Cdc5 / Mis18BP1 / Hs / Positive regulation of Mis18-HJURP targeting for new CENP-A deposition in G1 / [23]
PLK1/Cdc5 / CENP-U/Ame1 / Hs / Positive regulation of CENP-Q/Okp1 phosphorylation through recruitment of PLK1 / [24]
PLK1/Cdc5 / CENP-Q/Okp1 / Hs / Negative regulation of CENP-Q kinetochore localization late in the cell cycle / [25]
PLK1/Cdc5 / Lrs4 / Sc / Positive regulation of monopolin localization. Possibly indirect. Depends on Spo13. / [26, 27]
PLK1/Cdc5 / SA2/Scc3 / Hs / Positive regulation of prophase removal of cohesin from chromosomes / [28]
PLK1/Cdc5 / Rad21/Scc1 / Hs, Sc / Positive regulation of Scc1 cleavage by separase / [28, 29]
PLK1/Cdc5 / BubR1 / Hs, Xl / Required for checkpoint arrest, generation of 3F3/2 epitope / [30-32]
PLK1/Cdc5 / PICH / Hs / Positive regulation of Mad2 localization / [33]
PLK1/Cdc5 / Mam1 / Sc / Substrate during meiosis I. Possibly indirect. / [34]
PLK1/Cdc5 / Survivin / Hs / Activation of Aurora B activity at centromeres / [35]
PLK1/Cdc5 / CLASP-2 / Hs / Required for proper chromosome alignment / [36]
Cdk1 / Mis18BP1 / Hs / Negative regulation of CENP-A assembly in G2/M / [37, 38]
Cdk1 / HJURP / Hs / Negative regulation of CENP-A assembly in G2/M / [38, 39]
Cdk1 / CENP-T/Cnn1 / Hs, Sc / Positive regulation of Ndc80 recruitment; negative regulation of Mis12/MIND binding / [40-44]
Cdk1 / CENP-A/Cse4 / Hs / Negative regulation of CENP-A-HJURP interaction, prevents CENP-A deposition in G2/M / [45]
Cdk1 / Dsn1 / Sc / Unknown, antagonized by Cdc14 prior to anaphase / [46]
Cdk1 / Aurora B/Ipl1 / Sc / Negative regulation of Bim1 interaction / [47]
Cdk1 / INCENP/Sli15 / Hs, Sc / Negative regulation of CPC spindle localization / [48, 49]
Cdk1 / Survivin/Bir1 / Sp / Positive regulation of centromere localization through Sgo1 binding / [50]
Cdk1 / Borealin / Hs / Positive regulation of centromere localization through Sgo1 binding / [50]
Cdk1 / RepoMan / Hs / Negative regulation PP1-RepoMan localization before anaphase / [51]
Cdk1 / BubR1 / Xl / Positive regulation of checkpoint arrest and Mad2 recruitment, prerequisite for PLK1 activity against BubR1 / [52]
Cdk1 / PICH / Hs / Positive regulation of PLK1-PICH interaction / [33]
Cdk1 / CLASP-2 / Hs / Positive regulation of PLK1-CLASP-2 interaction, involved in PLK1 targeting to kinetochores. / [36]
Cdk1 / Astrin / Hs / Positive regulation of Astrin kinetochore localization / [53]
Cdk1 / Ska3 / Hs / Positive regulation of Ska3-Ndc80 interaction / [54]
Mps1 / CENP-T/Cnn1 / Sc / Positive regulation of Ndc80 recruitment; negative regulation of Mis12/MIND binding / [40, 44, 55]
Mps1 / KNL1/Spc105 / Sc, Hs / Positive regulation of SAC protein recruitment to KNL1/Spc105. / [56-58]
Mps1 / Borealin / Hs / Positive regulation of chromosome alignment through Aurora B / [59]
Mps1 / Bub1 / Sc / Positive regulation of Mad1 kinetochore recruitment and SAC activity / [60]
Mps1 / Ska3 / Hs / Positive regulation of Ska complex dissociation from the microtubule plus end / [61]
Aurora B/Ipl1 / Dsn1 / Hs, Sc / Positive regulation of kinetochore assembly through CENP-C/Mif2 interaction / [62]
Aurora B/Ipl1 / KNL1/Spc105 / Hs, Sc, Ce / Negative regulation of KMN-MT interaction / [63]
Aurora B/Ipl1 / CENP-C/Mif2 / Sc / In vitro phosphorylation, function unknown / [64]
Aurora B/Ipl1 / CENP-A/Cse4 / Hs / Positive regulation of kinetochore assembly / [65-67]
Aurora B/Ipl1 / INCENP/Sli15 / Sc, Ce / Negative regulation of CPC spindle localization. / [68, 69]
Aurora B/Ipl1 / Survivin/Bir1 / Hs / Positive regulation of Survivin localization / [70]
Aurora B/Ipl1 / Ndc80c (Ndc80, Hec1) / Hs, Sc, Ce / Negative regulation of MT binding / [71-73]
Aurora B/Ipl1 / DASH (Dam1, Spc34, Ask1) / Sc / Negative regulation of KT-MT interaction / [73]
Aurora B/Ipl1 / Ska1/3 / Hs / Negative regulation of kinetochore interactions / [74]
Aurora B/Ipl1 / Cep3 / Sc / In vitro phosphorylation, function unknown / [64]
Aurora B/Ipl1 / EB1/Bim1 / Sc / Positive regulation of midzone disassembly at anaphase / [47]
Aurora B/Ipl1 / Mad3 / Sc / Positive regulation of SAC signaling / [75]
Aurora B/Ipl1 / histone H3 / Hs, Sc, Ce, Xl / Anaphase chromatin compaction in yeast. / Reviewed in [76]
Aurora B/Ipl1 / PLK1 / Dm, Hs / Activation of PLK1 at centromeres / [77]
Aurora B/Ipl1 / zwint-1 / Hs / Positive regulation of dynein recruitment to kinetochores / [78]
Aurora B/Ipl1 / CENP-E / Hs / Regulation of CENP-E activity. Required for normal chromosome congression. / [79]
Cdc7 / Ctf19 / Sc / Positive regulation of Scc2 recruitment in G1 / [80, 81]
Cdc7 / Unknown / Sc / Positive regulation of replication origin activation at centromeres / [80]

Other kinases (see also[82]):

Aurora A

SKAP

Bub1

Casein kinase/Hrr25

Haspin

1

Supplemental References

1. Regnier, V. et al. (2005) CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol 25 (10), 3967-81.

2. Stoler, S. et al. (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9 (5), 573-86.

3. Takahashi, K. et al. (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288 (5474), 2215-9.

4. Kwon, M.S. et al. (2007) CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 18 (6), 2155-68.

5. Meeks-Wagner, D. et al. (1986) Isolation of two genes that affect mitotic chromosome transmission in S. cerevisiae. Cell 44 (1), 53-63.

6. Tanaka, K. et al. (2009) CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev Cell 17 (3), 334-43.

7. Kim, D.U. et al. (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28 (6), 617-23.

8. Kouprina, N. et al. (1993) Identification and cloning of the CHL4 gene controlling chromosome segregation in yeast. Genetics 135 (2), 327-41.

9. McKinley, K.L. et al. (2015) The CENP-L-N Complex Forms a Critical Node in an Integrated Meshwork of Interactions at the Centromere-Kinetochore Interface. Mol Cell 60 (6), 886-98.

10. Okada, M. et al. (2006) The DT40 system as a tool for analyzing kinetochore assembly. Subcell Biochem 40, 91-106.

11. Nishihashi, A. et al. (2002) CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2 (4), 463-76.

12. Saitoh, S. et al. (1997) Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 90 (1), 131-43.

13. Fukagawa, T. et al. (2001) CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 20 (16), 4603-17.

14. Poddar, A. et al. (1999) MCM21 and MCM22, two novel genes of the yeast Saccharomyces cerevisiae are required for chromosome transmission. Mol Microbiol 31 (1), 349-60.

15. Pidoux, A.L. et al. (2003) Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J Cell Biol 161 (2), 295-307.

16. Hyland, K.M. et al. (1999) Ctf19p: A novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J Cell Biol 145 (1), 15-28.

17. Kerres, A. et al. (2006) Fta2, an essential fission yeast kinetochore component, interacts closely with the conserved Mal2 protein. Mol Biol Cell 17 (10), 4167-78.

18. Hori, T. et al. (2008) CENP-O class proteins form a stable complex and are required for proper kinetochore function. Molecular biology of the cell 19 (3), 843-54.

19. Ortiz, J. et al. (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 13 (9), 1140-55.

20. Minoshima, Y. et al. (2005) The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol Cell Biol 25 (23), 10315-28.

21. Bitton, D.A. et al. (2011) Augmented annotation of the Schizosaccharomyces pombe genome reveals additional genes required for growth and viability. Genetics 187 (4), 1207-17.

22. Hayashi, A. et al. (2006) Reconstruction of the kinetochore during meiosis in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 17 (12), 5173-84.

23. McKinley, K.L. and Cheeseman, I.M. (2014) Polo-like kinase 1 licenses CENP-A deposition at centromeres. Cell 158 (2), 397-411.

24. Kang, Y.H. et al. (2006) Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol Cell 24 (3), 409-22.

25. Park, C.H. et al. (2015) Mammalian Polo-like kinase 1 (Plk1) promotes proper chromosome segregation by phosphorylating and delocalizing the PBIP1.CENP-Q complex from kinetochores. J Biol Chem 290 (13), 8569-81.

26. Katis, V.L. et al. (2004) Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. Curr Biol 14 (24), 2183-96.

27. Lee, B.H. et al. (2004) Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr Biol 14 (24), 2168-82.

28. Hauf, S. et al. (2005) Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol 3 (3), e69.

29. Alexandru, G. et al. (2001) Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105 (4), 459-72.

30. Ahonen, L.J. et al. (2005) Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr Biol 15 (12), 1078-89.

31. Elowe, S. et al. (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21 (17), 2205-19.

32. Wong, O.K. and Fang, G. (2006) Loading of the 3F3/2 antigen onto kinetochores is dependent on the ordered assembly of the spindle checkpoint proteins. Mol Biol Cell 17 (10), 4390-9.

33. Baumann, C. et al. (2007) PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128 (1), 101-14.

34. Clyne, R.K. et al. (2003) Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol 5 (5), 480-5.

35. Chu, Y. et al. (2011) Aurora B kinase activation requires survivin priming phosphorylation by PLK1. J Mol Cell Biol 3 (4), 260-7.

36. Maia, A.R. et al. (2012) Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J Cell Biol 199 (2), 285-301.

37. Silva, M.C. et al. (2012) Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Dev Cell 22 (1), 52-63.

38. Stankovic, A. et al. (2017) A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly. Mol Cell 65 (2), 231-246.

39. Muller, S. et al. (2014) Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading. Cell Rep 8 (1), 190-203.

40. Bock, L.J. et al. (2012) Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat. Cell Biol. 14 (6), 614-24.

41. Gascoigne, K.E. and Cheeseman, I.M. (2013) CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state. J Cell Biol 201 (1), 23-32.

42. Gascoigne, K.E. et al. (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145 (3), 410-22.

43. Huis In 't Veld, P.J. et al. (2016) Molecular basis of outer kinetochore assembly on CENP-T. Elife 5.

44. Malvezzi, F. et al. (2013) A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. The EMBO Journal 32 (3), 409-23.

45. Yu, Z. et al. (2015) Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell 32 (1), 68-81.

46. Akiyoshi, B. and Biggins, S. (2010) Cdc14-dependent dephosphorylation of a kinetochore protein prior to anaphase in Saccharomyces cerevisiae. Genetics 186 (4), 1487-91.

47. Zimniak, T. et al. (2012) Spatiotemporal regulation of Ipl1/Aurora activity by direct Cdk1 phosphorylation. Curr Biol 22 (9), 787-93.

48. Murata-Hori, M. et al. (2002) Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol Biol Cell 13 (4), 1099-108.

49. Pereira, G. and Schiebel, E. (2003) Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302 (5653), 2120-4.

50. Tsukahara, T. et al. (2010) Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature 467 (7316), 719-23.

51. Qian, J. et al. (2015) Cdk1 orders mitotic events through coordination of a chromosome-associated phosphatase switch. Nat Commun 6, 10215.

52. Wong, O.K. and Fang, G. (2007) Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope. J Cell Biol 179 (4), 611-7.

53. Chung, H.J. et al. (2016) Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem 291 (34), 17579-92.

54. Zhang, Q. et al. (2017) Ska3 Phosphorylated by Cdk1 Binds Ndc80 and Recruits Ska to Kinetochores to Promote Mitotic Progression. Curr Biol.

55. Thapa, K.S. et al. (2015) The Mps1 kinase modulates the recruitment and activity of Cnn1(CENP-T) at Saccharomyces cerevisiae kinetochores. Genetics 200 (1), 79-90.

56. London, N. et al. (2012) Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol 22 (10), 900-6.

57. Shepperd, L.A. et al. (2012) Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol 22 (10), 891-9.

58. Yamagishi, Y. et al. (2012) MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 14 (7), 746-52.

59. Jelluma, N. et al. (2008) Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell 132 (2), 233-46.

60. London, N. and Biggins, S. (2014) Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev 28 (2), 140-52.

61. Maciejowski, J. et al. (2017) Mps1 Regulates Kinetochore-Microtubule Attachment Stability via the Ska Complex to Ensure Error-Free Chromosome Segregation. Dev Cell 41 (2), 143-156 e6.

62. Akiyoshi, B. et al. (2013) The aurora B kinase promotes inner and outer kinetochore interactions in budding yeast. Genetics 194 (3), 785-9.

63. Welburn, J.P. et al. (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 38 (3), 383-92.

64. Westermann, S. et al. (2003) Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163 (2), 215-22.

65. Goutte-Gattat, D. et al. (2013) Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function. Proc Natl Acad Sci U S A 110 (21), 8579-84.

66. Kunitoku, N. et al. (2003) CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 5 (6), 853-64.

67. Zeitlin, S.G. et al. (2001) Differential regulation of CENP-A and histone H3 phosphorylation in G2/M. J Cell Sci 114 (Pt 4), 653-61.

68. Bishop, J.D. and Schumacher, J.M. (2002) Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B Kinase stimulates Aurora B kinase activity. J Biol Chem 277 (31), 27577-80.

69. Kang, J. et al. (2001) Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)-related protein Sli15 during chromosome segregation. J Cell Biol 155 (5), 763-74.

70. Wheatley, S.P. et al. (2004) Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J Biol Chem 279 (7), 5655-60.

71. Ciferri, C. et al. (2008) Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133 (3), 427-39.

72. Cheeseman, I.M. et al. (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127 (5), 983-97.

73. Cheeseman, I.M. et al. (2002) Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111 (2), 163-72.

74. Chan, Y.W. et al. (2012) Aurora B controls kinetochore-microtubule attachments by inhibiting Ska complex-KMN network interaction. J Cell Biol 196 (5), 563-71.

75. King, E.M. et al. (2007) Ipl1p-dependent phosphorylation of Mad3p is required for the spindle checkpoint response to lack of tension at kinetochores. Genes Dev 21 (10), 1163-8.

76. Carmena, M. et al. (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13 (12), 789-803.

77. Carmena, M. et al. (2012) The chromosomal passenger complex activates Polo kinase at centromeres. PLoS Biol 10 (1), e1001250.

78. Kasuboski, J.M. et al. (2011) Zwint-1 is a novel Aurora B substrate required for the assembly of a dynein-binding platform on kinetochores. Mol Biol Cell 22 (18), 3318-30.

79. Kim, Y. et al. (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142 (3), 444-55.

80. Natsume, T. et al. (2013) Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol. Cell 50 (5), 661-74.

81. Hinshaw, S.M. et al. (2017) The kinetochore receptor for the cohesin loading complex. Cell (In press).

82. Funabiki, H. and Wynne, D.J. (2013) Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 122 (3), 135-58.

1