DirectTorqueControlofDouble Star permanentmagnetSynchronousMachine
B.NAAS1,2,B.NAAS1,L.NEZLI1,M.ELBAR1,2,M.O.MAHMOUDI,M.SBOUCHERIT.
,,,
1ProcessControlLaboratory,NationalPolytechnicSchool,Algiers,Algeria
2ElectricalEngineeringDepartment,ZianeACHOURUniversity,Djelfa,Algeria
Abstract—Inordertoincreasetheavailabilityoftheembarked actuators onesolutionistoequipthemwithdouble-star machines.Toincreasetheircompactnessthepermanentmagnet synchronousmachines(PMSM)areusuallypreferred.
ThisstudydescribesthecontrolofdoublestarPMSM,using
Direct Torque Control(DTC). TheimplementationoftheDTC appliedtoadoublestarsynchronousmachineisvalidatedwith simulated results. Inthispaperamethodformodeling and simulationofsynchronous motordrivesusing MALAB/SIMULINK.
B. Assumptions
Thestudypresentedinthispaperisbaseduponhefollowing assumptions:
- Thetwostarsareidenticalshiftedupanangle.
- Therotorusnon-salient.
- Thethreewindingsofeachstarareshiftedbyθ=1200.
- The magnetomotrice forces in the air-gap have a sinusoidalrepartition;
- Thesaturationoftheironinthemachineisneglected.
Index Terms—direct torque control (DTC), Double star synchronousMachine(DSPMSM),andinverter.
I. INTRODUCTION
Since,years80,doublearmaturesynchronousmachine
DSSMsuppliedbypowerelectronicconverterarewidely
b2 ib2
Vb2
Vb1
Vf
Φf
d
Va2
a2
ia2
usedformarineapplications [1],[4],[6].Duetotheir compactnessandnopowerlossesintherotorsynchronous
machines permanentmagnet(PMSM)areincreasingly used inembeddedsystems.Innumberofapplications, suchas actuatorsusedinthe fieldofaeronauticsorcars[13],[14].
Nowadays,theactualdevelopment ofpowerelectronics devicesallowssupplyingDSSMbyPWMinverter[5],[7].In theotherhand,thevectorcontroltechnique [8],[9]allows improvingperformancesofthisspeeddrive.
ThedifficultytocontroltheDS-PMSMsuppliedbystrong couplingis duetothestrongmagneticcouplingbetween.
Vc1
ic1
c1
Vc2
γ θ
ic2
Va2
Va1
q
a1
ia1
II. ELECTRICALDRIVE SCHEME
Theelectrical driveconsideredwiththisstudy isshownin figure(1).Itiscomposed ofdoublestarsynchronous machinesuppliedoftwoinverters.
III. MODELOFDOUBLESTARSYNCHRONOUS MACHINE
Fig.2Electricalwindingsdoublestarpermanentmagnet
synchronousmachine
C.Electricalequationswith(α.β)frames
ByapplyingtheConcordiatransformationto eachstar, the(α,β)modelofdoublestarpermanentmagnet synchronousmachineisobtained[11],[12].Thus,the machinewindingscanbesubstitutedbyanequivalent schemeinthe(α,β)frameasshowninfigure(3):
A. Description
Aseveryrotatingelectricalmachine,thedoublestar permanentmagnetsynchronousmachineiscomposedofa statorandrotor.Asshowninfigure(2),thestatorisatwo three-phasewindings,socalledstar,shiftedupbyanangle γ=300.
Controlofinverter
L
D D2 D3
T11
T12
T13
R C
D1 D2 D3
T’12
T’22
T’12
T11
T12
T13
DSPMSM
T’12
T’22
T’32
Controlofinverter
Fig.1Electricaldrivescheme
Vβ1
Vβ2
iβ1
iβ2
Indoublestarmachine
(10) (11)
Vα2
iα2
Vα1
iα1
IV. DIRECTTORQUECONTROLPRINCIPLE
Thedirecttorquecontrol ofadoublestarpermanent magnetsynchronous machineisbasedonthedirect determination ofthesequencecontrolusedtoswitcha voltageinverter.
Fig.3Representationoffictitiouscoilsdiphasicin (α,β)
frame
Theelectricalequationin(α,β)frame:
(1) (2)
(3)
(4) Thefluxequation
(5)
(6) (7) (8)
Electromagnetictorque
(9) (10)
Thischoice isusually basedonuseofhysteresis comparators whosefunctionistocontrolthesystemstate, namelythe amplitudeof stator flux and electromagnetic torque.AVoltage Inverterdeliverstwelvedistinctpositions (figure4)intheplanphase.
DTCinsingleinverterutilizesthe(23=8) eightpossible statorvoltage vectors,twoofwhicharezerovectors,to controlthestatorfluxandtorquetofollow thereference valueswithinthehysteresis bands. Thevoltage spacevector ofathree-phasesystemisgivenby:
(12) (13)
Thecontrolsequencesofthetwoinvertersisdoneinaway thatwill havethevoltage vectorsattheexitofthesecond inverteroffsetbyanangleof300,thevectorsofvoltageatthe outputoffirstinverterfigure1.
(14)
Fig.4Voltagespacevector
Ud
A combinatorialanalysis of switch states of the two
6
Thisangleshiftbetweenthetwostarsofthemachines,which
invertersgives(2
=64)switchingmodes,ie64different
is equalπ/6.
V5
V6
V7
V8
β
V4 V3
V2
V1
α
V1
V1
vectorsVS possible.Hencethere are sixty four possible
combinations for controlling the switches of the two
inverters.TableI.
Wewillthereforeamongthesixty-foursequences,twelve activesequences.Thesevectorsdefinetwelvevoltageat the outputofbothinvertersVSi(i=1,2,..,12),andfoursequences (Si=000000,000111,111000,111111)aresequencesof freewheelinganddefinefourzerovoltagevectors.Thetruth tablefortheactivesequencescanbesummarizedin the followingtable:
TheorderbytheDTCofDSSMcanberepresentedby figure5.
V9 V1
ࢣs*
ࢣs
φs*
ࢣ
Truth
Table
φ
Sa1b1c1
3
ia1b1c1
3
DS-PMSM
Sa2b2c2
φs
ીs
ia2b2c2
Ud
Torque
Estimator
φsαβ
FluxEstimator Voltage
Estimator
Va1b1c1
Va2b2c2
isαβ
Vsαβ
Concordia
Transformation
Fig.5DirecttorquecontrolofDSPMSM
J=0.005N.m2/s,Mfd=1.518H,if=1A, fr=0.001N.s/rad.
V. NUMERICALSIMULATIONRESULTS
ThepaperdescribesaMATLAB SIMULINK that providesfacilitiesforinvestigationofalgorithmsforsolving directtorquecontrolproblems ofdoublestarsynchronous machine.
B.Parametersforthe DoubleStarSynchronousmachine:
Motordetails:5kW,3phase,50Hz,1pole,200v, Rs=2.35Ω,Ld=0.1961H, Md=0.185H,
Lq=0.1105H,Mq=0.1005H,γ=300,
0.14
StatorFlux
VI. CONCLUSION
0.12
0.1
0.08
0.06
0.04
0.02
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Temps(s)
TrajectoryoftheStatorFlux
Inthispaper,wepresentedthedirectcontrolofthetorque ofthesynchronous doublestarmachinesuppliedbytwo voltageinvertersattwolevels.
Thisstudypresents acontrolstrategy foradouble stator thepermanent magnetsynchronous machinebasedonthe direct control torque (DTC) using an PI regulator. The
simulationresultsshowthattheDTCis anexcellentsolution forgeneral-purposeDSSMdoublestarsynchronousmachine
0.15
0.1
0.05
0
-0.05
-0.1
80
60
40
20
0
-20
-40
-60
-0.1 -0.05 0 0.05 0.1 0.15
phialfa1(Wb)
ElectromagneticTorque
drives.Inverywidepowerrange.
[1] L.Mazdier,“Lapropulsionélectriquedesnavires”Revue del’électricitéetdel’électronique,No.3,pp.30-36,mars
1997.
[2] M.F.Benkhoris,N.Tali-Maamar,andF.Terrien, “Decoupled controlofdoublestarsynchronousmotor
suppliedbyPWMinverter:Simulationandexperimental results”,ICEM-2002.
[3] A.Khelouia, F.Meibody-Tabara,B.Davat,“Current commutation analysis in self-controlled double stator
synchronous machines taking into account saturation
effect,” ElectricPowerComponentsandSystems,Volume
23,Issue5September1995,pages557-569.
[4] K.H.Ketteler,“Multisystempropulsionconcepton the basesofthedoublestarcircuit,”, EPE952:159-166,1995, Sevilla,Spain.
[5] F.Terrin,M.F. Benkhoris,“Analysisofdoublestar motor
th
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
drives for electrical propulsion,” IEE: 9
International
20
15
10
5
0
-5
-10
-15
Temps(s)
ZoomElectromagneticTorque
conference ElectricalMachinesanddrivesEMD99, Canterbury, UK;1-3september1999;conference publication468,pp90-95.
[6]LWerren,“Synchronous machinewith2three-phase windings,spatiallydisposecedby300 el.Commutation reactanceandmodelforconverter-performncesimulation
,”ICEM84,2:781-794,sept.1984,Lausnne,Switzerland. [7] N.Moubayed,F.Meibody-Tabar,B.Davat“Alimentation
paronduleursde tensiond’unemachine
synchrone,”RevueInternationaldegénieélectrique,Vol.1, No4, pp.457-470,1998.
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
Temps(s)
Speed
2000
1500
1000
500
0
-500
-1000
-1500
-2000
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Temps(s)
[8] W. Leonhard “Control of electrical drives,” Editions
Springer1996.
[9] P.Vas“VectorcontrolofACmachines,”Oxfordscience publication1994.
[10]F.Terrien,“Commanded’unemachinesynchronedouble étoile, alimentée par des onduleurs MLI,” Thèse de
doctoratdel’universitédeNantes,December2000.
[11]T.ALipo“Ad-qmodelforsixphaseinductionmachines,” ICEM80,p.860-867.
[12]M.A. Shamsi-Nejad, “The study of double-star
synchronousmachineinnormalmodeandthe”2006IEEE [13]M.A.SHAMSINEJAD,“Architecturesd’Alimentationetde
Commanded’ActionneursTolérantsauxDéfauts-Régulateur deCourant NonLinéaireàLargeBandePassante” Thèsede doctoratde l’institutNationalPolytechniquedeLorraire2007
150
ZoomSpeed
100
50
0
-50
-100
-150
-200
-250
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
Temps(s)