Electronic Supplementary Materials

Table S1 Site description of flux towers used in this study

Site name / Country / Latitude (ºN) / Longitude (ºE) / Vegetation / MAT(ºC) / MAP(mm) / Year / Citation
Changbaishang
(CBS) / China / 42.403 / 128.096 / Temperate deciduous mixed forest / 3.6 / 713 / 2003-
2004 / Zhang et al. 2006a
Yu et al. 2006
Qianyanzhou
(QYZ) / China / 26.750 / 115.063 / Sub-tropical planted evergreen needleleaf forest / 17.9 / 1485 / 2003-
2004 / Zhang et al. 2006b
Yu et al. 2006
Dinghushang
(DHS) / China / 23.167 / 112.533 / Evergreen broad-leaved forest / 21.0 / 1956 / 2003-
2004 / Sun et al. 2006
Yu et al. 2006
Tomakomai
(TMK) / Japan / 42.739 / 141.515 / Deciduous needleleaf forest / 6.7 / 1738 / 2001-
2003 / Hirata et al. 2007
Takayama
(TKY) / Japan / 36.146 / 137.423 / Deciduous broadleaf forest / 7.3 / 2200 / 2004-
2006 / Saigusa et al. 2005

Note: MAT,Mean Annual Temperature; MAP,Mean Annual Precipitation

1

Table S2 Statistics for the comparison of GPP calculated using the MOD17 algorithm with tower-measured GPP (GPP_FLUX) at 5 study sites1

Site / Year / Mean annual values (g C m-2 (d)-1) / RE2 / R2 / RMSE ( g C m-2 (d)-1)
GPP_FLUX / GPP_ MODIS / GPP_
REV1 / GPP_
REV2 / GPP_
REV3 / GPP_
REV4 / GPP_ MODIS / GPP_ REV1 / GPP_ REV2 / GPP_
REV3 / GPP_
REV4 / GPP_ MODIS / GPP_
REV1 / GPP_ REV2 / GPP_ REV3 / GPP_ REV4 / GPP_ MODIS / GPP_
REV1 / GPP_
REV2 / GPP_
REV3 / GPP_
REV4
CBS / 2003 / 4.02 / 1.12 / 1.54 / 1.59 / 3.16 / 3.47 / -72.16% / -61.69% / -60.35% / -21.28% / -13.62% / 0.91 / 0.83 / 0.88 / 0.88 / 0.98 / 3.98 / 3.40 / 3.29 / 1.62 / 0.90
2004 / 3.98 / 1.17 / 1.48 / 1.52 / 3.15 / 3.30 / -70.63% / -62.80% / -61.84% / -20.80% / -17.21% / 0.96 / 0.76 / 0.83 / 0.83 / 0.94 / 3.77 / 3.42 / 3.25 / 1.53 / 1.24
QYZ / 2003 / 4.65 / 3.07 / 2.45 / 2.48 / 3.71 / 4.02 / -34.04% / -47.35% / -46.67% / -20.21% / -13.56% / 0.72 / 0.84 / 0.87 / 0.87 / 0.93 / 1.99 / 2.32 / 2.27 / 1.41 / 1.13
2004 / 4.68 / 2.48 / 2.45 / 2.51 / 3.76 / 4.23 / -46.97% / -47.79% / -46.33% / -19.71% / -9.80% / 0.67 / 0.75 / 0.83 / 0.83 / 0.94 / 2.51 / 2.48 / 2.34 / 1.57 / 1.09
DHS / 2003 / 3.97 / 3.73 / 3.64 / 3.79 / 2.89 / 3.47 / -6.08% / -8.28% / -4.47% / -27.24% / -12.64% / 0.37 / 0.35 / 0.51 / 0.51 / 0.52 / 2.12 / 2.34 / 2.03 / 1.37 / 1.23
2004 / 3.86 / 3.22 / 3.35 / 3.51 / 2.95 / 3.42 / -16.52% / -13.16% / -9.01% / -23.48% / -11.24% / 0.19 / 0.34 / 0.56 / 0.56 / 0.51 / 1.70 / 1.81 / 1.31 / 1.12 / 1.08
TMK / 2001 / 4.17 / 1.51 / 1.97 / 2.10 / 3.43 / 4.13 / -63.89% / -52.87% / -49.73% / -17.83% / -1.08% / 0.6 / 0.69 / 0.94 / 0.94 / 0.96 / 4.49 / 3.66 / 2.78 / 1.30 / 0.89
2002 / 3.70 / 1.66 / 2.13 / 2.27 / 2.89 / 3.54 / -55.02% / -42.43% / -38.58% / -21.88% / -4.11% / 0.62 / 0.6 / 0.87 / 0.87 / 0.93 / 3.31 / 2.76 / 1.68 / 1.36 / 0.96
2003 / 4.59 / 1.59 / 2.29 / 2.38 / 3.68 / 4.60 / -65.25% / -50.09% / -48.01% / -19.73% / 2.03% / 0.68 / 0.73 / 0.95 / 0.95 / 0.97 / 4.80 / 3.69 / 2.82 / 1.15 / 0.88
TKY / 2004 / 2.16 / 1.91 / 2.38 / 2.43 / 1.97 / 2.14 / -11.45% / 10.28% / 12.74% / -8.85% / -0.65% / 0.51 / 0.75 / 0.84 / 0.84 / 0.87 / 1.78 / 1.32 / 1.19 / 1.07 / 0.88
2005 / 2.33 / 1.82 / 2.11 / 2.50 / 2.26 / 2.33 / -21.75% / -9.46% / 7.39% / -2.89% / 0.27% / 0.41 / 0.63 / 0.81 / 0.81 / 0.87 / 2.19 / 1.68 / 1.22 / 1.23 / 1.02
2006 / 2.50 / 1.74 / 2.24 / 2.31 / 2.09 / 2.51 / -30.48% / -10.55% / -7.52% / -16.38% / 0.44% / 0.5 / 0.6 / 0.8 / 0.8 / 0.83 / 2.26 / 1.87 / 1.29 / 1.27 / 1.17

1 GPP_FLUX is GPP derived from EC measurements. GPP_REV1 is GPP calculated using the MOD17 algorithm in conjunction with observed meteorological data, MODIS LAI and defaultεmax. GPP_REV2 is GPP calculated using the MOD17 algorithm, observed meteorological data,fPAR calculated using smoothed LAI, and default εmax. GPP_REV3 is GPP estimated using the MOD17 algorithm, observed meteorological data ,fPAR calculated using smoothed LAI, and the calibratedεmax. GPP_REV4 is GPP simulated by separatingcanopy into sunlit and shaded leaves, for each of them GPP was calculated using the MOD17 algorithm driven by observed meteorological data,fPAR calculated using smoothed LAI, and the calibratedεmax.

2 RE=(GPP_REVx-GPP_FLUX)/GPP_FLUX×100%, where GPP_REVx andGPP_FLUX are the calculated and measured GPP.

1

Figure S1 Spatial distribution of simulated annual GPP in 2003.(a) GPP simulated using the MOD17 in conjunction with interpolated NCEP meteorological data, fPAR estimated using smoothed MODIS LAI, and default εmax(GPP_R_S1), (b) GPP simulated using the MOD17 algorithm in conjunction with interpolated NCEP meteorological data, fPAR estimated using smoothed MODIS LAI, and calibrated εmax (GPP_R_S2), (c) GPP simulated using the sunlit and shaded leaf separation approach in conjunction with interpolated NCEP meteorological data and fPAR estimated using smoothed MODIS LAI(GPP_R_S3) , (d) GPP_R_S3 minusGPP_R_S2.

References

Hirata R, Hirano T, Saigusa N, Fujinuma Y, Inukai K, Kitamoi Y, Takahashi Y, Yamamoto S (2007). Seasonal and international variations in carbon dioxide exchange of a temperate larch forest. AgrForest Meteorol 147: 110-124.

Saigusa, N, Yamamoto S, Murayama S, and Kondo H(2005), Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements, Agric. For. Meteorol., 134, 4-16.

Sun XM, Wen XF, Yu GR, Liu YF, Liu QJ (2006) Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southern China. Science in China D: Earth Sciences 49: Supp.II 110-118

Yu GR, Wen XF, Sun XM, Tanner BD, Lee XH, Chan JY (2006) Overview of ChinaFLUX and evaluation of its eddy covariance measurement. AgrForest Meteorol 137: 125-137

Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Fu YL, Li QK, Li ZQ, Liu YF, Guan DX, Yan JH (2006a) Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. AgrForest Meteorol 137: 176-187

Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Song X, Liu YF, Guan DX, Yan JH, Zhang YP (2006b) Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China. Sci China Earth Sci 49: 47-62

1