Table 1 Catalysts used in Conversion of Biomass Feedstocks and Model Compounds.

Catalyst / Reactor Type / Feedstock / Reaction Temp., time,
ramp rate, space velocity / Products / Ref.
HZSM-5, (Si/Al = 130), ZnZSM-5 (140), and MnZSM-5 (132), bentonite / Continuous flow, fixed bed microreactor / cyclopentenone , furfural, glycerol, glucose, fructose, and their derivs. / 350-560˚C, 3 h
0.281-1.26 h-1 / 2.1% hydrocarbons over HZSM-5/bentonite, 14.8% with MeOH
0.9% MnZSM-5/bentonite, 0.7% for ZnZSM-5/bentonite / [1]
[2]
HZSM-5, Fe,Cr-ZSM5. ReUSY,
Alumina, Al-MCM-41 / Piston fixed bed catalytic reactor / 2-furaldehyde: 2.86; acetic acid: 17.14; cyclohexanone: 11.4; guaiacol: 17.1; vanillin: 8.6, and H2O: 42.8 / 500˚C
WHSV = 2.75 h-1 / 40.7-57.7wt% liquid product for ZSM-5 / [3]
H-Y, NH4-Y, NH4-ZSM-5, nanopowders of SiO2, Al2O3, MgO, TiSiO4 and Al2O3TiO2 / Pyroprobe batch / Cellulose / 500˚C for 60s pp,
20˚Cms-1 / Zeolites and nanopowder metal oxides exhibited a strong influence on the pyrolytic behavior of cellulose. Zeolites reduced yields of anhydrosugars with respect to pure cellulose. All nanopowders but silicon oxide provided higher yields. / [4]
HZSM-5 / Fixed bed / Wood / ~450-500˚C
WHSV = 1.8-2.5 h-1 / Wood-to-hydrocarbon yield was approx.20%. / [5]
HZSM-5, (Si/Al=50) / Fluidized bed / Wood waste / 550˚C, 30 min, 216-228 gh-1 / 5.7% oil using ZSM-5. / [6]
ZnO / Pyroprobe batch and fluidized bed / Pine sawdust / 600˚C, (pp), 400˚C 2 h (fb)
4.9 h-1 (fb) / ZnO a mild catalyst. 57 wt% oil, 20 wt% gases / [7]
HZSM-5 (Si/Al=24) / Conical spouted bed / Pinus insignis sawdust / 400-500˚C
WHSV=12.0-36.0 h-1 / 30.8 wt% total organic liquid yield, 6.3 wt% yield aromatics (12% carbon yield aromatics) / [8][9]
silica sand, FCC and ZSM-5, USY
(Si/Al = / Circulating fluidized bed / Lignocell HBS 150-500 / 400-500˚C,
WHSV=2.9-18 h-1 / 30.6, 44.4, 36.4 wt% total organic liquid yield for 18, 4.9 and 2.3 WHSV, respectively / [10]
Al-MCM-41 Si/Al = 20, SBA-15, Al-SBA-15 (Si/Al=2.5), Cu-Al-MCM-41 / Fixed bed / Spruce and Miscanthus wood / 500˚C / 10 wt% desirable organic yield. Al-MCM-41 was most active for Miscanthus, FCC for spruce. / [11]
H-Beta, Si/Al = 25, 150, 300 / Fluidized bed / Pine wood chips / 450~550˚C 2h,
10˚Cmin-1, 15 gh-1 / 53 wt% gases with Beta Si/Al = 300. Inc. with inc. acidity. / [12]
HZSM-5, Si/Al = 26
HY Si/Al = 4, Ga-ZSM-5 / Fluidized bed / Radiata pine / 450~550˚C 1 h,
10 gmin-1 / HZSM-5 was more efficient in bio-oil upgrading than HY. 35.6 % gas at 500˚C, 33.3% for HY.
Ga/HZSM-5 showed increased yield and the selectivity of aromatic hydrocarbons in the bio-oil. / [13]
Fe – Beta, Fe-Y, HY, Fe-Mordenite,
Fe-ZSM-5, HZSM-5, bentonite clay / Batch tube reactor / Peat / 410˚C 1 h, / 35.65 mass% methane, 11.80% ethane, 14.68% ethane, 5.77% propane for Fe-H-Beta (Si/Al=300)Highest yield / [14, 15]
Al-MCM-41, (Si/Al = 30 or 50) / Fixed bed / Lignocell HBS 150-500 / 500˚C 4.5s / Al-MCM-41 (50) produced 30wt% phenols, 9wt% alcohols, 19 wt% carbonyls in organic phase / [16]
HZSM-5 (Si/Al = 50), Al-MCM-41 (40) Al-MSU-F (40), alumina-stabilized ceria MI-575 / Pyroprobe batch / Cassava rhizome / 600˚C 10 s,
3000˚Cs-1 / ZSM-5 was the most active. ~7% (peak area) aromatics produced. / [17]

WHSV = weight hourly space velocity, fb = fixed bed, pp = pyroprobe..

References

[1].L.H. Dao, M. Haniff, A. Houle, D. Lamothe, ACS Symposium Series 376 (1988) 328.

[2].M.I. Hanniff, L.H. Dao, Applied Catalysis 39 (1988) 33.

[3].M.C. Samolada, A. Papafotica, I.A. Vasalos, Energy & Fuels 14 (2000) 1161.

[4].D. Fabbri, C. Torri, V. Baravelli, Journal of Analytical and Applied Pyrolysis 80 (2007) 24.

[5].J. Scahill, J. Diebold, A. Power, Res. Thermochem. Biomass Convers., [Ed. Rev. Pap. Int. Conf.] (1988) 927.

[6].P.A. Horne, N. Nugranad, P.T. Williams, Journal of Analytical and Applied Pyrolysis 34 (1995) 87.

[7].M.I. Nokkosmaki, E.T. Kuoppala, E.A. Leppamaki, A.O.I. Krause, Journal of Analytical and Applied Pyrolysis 55 (2000) 119.

[8].M. Olazar, R. Aguado, J. Bilbao, A. Barona, AIChE Journal 46 (2000) 1025.

[9].A. Atutxa, R. Aguado, A.G. Gayubo, M. Olazar, J. Bilbao, Energy & Fuels 19 (2005) 765.

[10].A.A. Lappas, M.C. Samolada, D.K. Iatridis, S.S. Voutetakis, I.A. Vasalos, Fuel 81 (2002) 2087.

[11].J. Adam, E. Antonakou, A. Lappas, M. Stoecker, M.H. Nilsen, A. Bouzga, J.E. Hustad, G. Oye, Microporous and Mesoporous Materials 96 (2006) 93.

[12].A. Aho, N. Kumar, K. Eranen, T. Salmi, M. Hupa, D.Y. Murzin, Process Safety and Environmental Protection 85 (2007) 473.

[13].H.J. Park, J.-I. Dong, J.-K. Jeon, K.-S. Yoo, J.-H. Yim, J.M. Sohn, Y.-K. Park, Journal of Industrial and Engineering Chemistry (Seoul, Republic of Korea) 13 (2007) 182.

[14].V.V. Alferov, O.S. Misnikov, O.V. Kislitsa, E.M. Sul'man, D.Y. Murzin, N. Kumar, Kataliz v Promyshlennosti (2006) 42.

[15].E.M. Sulman, V.V. Alferov, Y.Y. Kosivtsov, A.I. Sidorov, O.S. Misnikov, A.E. Afanasiev, N. Kumar, D. Kubicka, J. Agullo, T. Salmi, D.Y. Murzin, Chemical Engineering Journal (Amsterdam, Netherlands) 134 (2007) 162.

[16].E.F. Iliopoulou, E.V. Antonakou, S.A. Karakoulia, I.A. Vasalos, A.A. Lappas, K.S. Triantafyllidis, Chemical Engineering Journal (Amsterdam, Netherlands) 134 (2007) 51.

[17].A. Pattiya, J.O. Titiloye, A.V. Bridgwater, Journal of Analytical and Applied Pyrolysis 81 (2008) 72.