Surfactant-assistedtransport oflead ionthroughabulk liquidmembranecontainingdicyclohexyl-18-crown-6. Efficient removal of lead fromblood serum and sea water

FoujanFalaki• FarzanehShemirani• MojtabaShamsipur

Table S1Effecct of P2O74- concentration in RP on lead transport. Conditions : SP, 5 mL of 8 ppm Pb2+ and 2.4×10-3M picrate ion at pH 4.0; MP, 25 mL of 3.24×10-4 M DC18C6 in chloroform; RP,10 mL of varying cocentration of P2O74- at pH 7.0; time of transport, 3 h.

Concentration of P2O7-4 (M) / %Pb transported into RP / %Pb remaining in SP / %Pb remaining in MP
0
5.0×10-4
1.0×10-3
1.0×10-2
3.0×10-2
6.0×10-2
9.0×10-2 / 3.8
40.0
49.7
56.0
56.6
60.1
60.4 / 2.0
1.1
0.9
0.8
0.8
0.0
0.0 / 94.2
58.9
49.4
43.2
42.6
39.9
39.6

Table S2 Effect of nature of carrier on lead transport. Conditions: SP, 5 mL of 8 ppm Pb2+ and2.4×10-3M picrate ion at pH 4.0; MP, 25 mL of 3.2×10-4 M of each crown ether in chloroform; RP, 10 mL of 0.01 M P2O74- at pH 7.0, time of transport, 3 h.

Carrier / %Pb transported into RP / %Pb remaining in SP / %Pb remaining in MP
DBzDA18C6
DN18C6
B18C6
DA18C6
DB18C6
DC18C6 / 53.0
31.1
55.1
40.2
17.5
57.0 / 4.2
1.1
2.1
12.3
53.9
0.7 / 42.8
67.8
42.8
47.5
28.6
42.3

Table S3Selective transport of Pb2+ from sea water and blood serum samples. Conditions are similar to those mentioned in Fig.3B. Time of transport, 5 h.

Real sample / %Pb transported into RPa / %Pb remaining in SP / %Pb remaining in MP
Sea water b / 90.9 (± 0.8) / 0.0 / 9.1
Blood serum c / 100.0( ± 0.8) / 0.0 / 0.0

aMean ± SD (n=4). bCaspian sea water. cDanesh Pathobiology Laboratory, Tehran, Iran.