Supplementary Table 1 Levels of proteolytic fragments from disease associated APPmutations in various experimental systems

Measures reported as relative values are shown as qualitative change; absolute values given with units as reported, Y-reported only as present.

Mutation position / Comments / APP / [sAPP] / sAPPα / sAPPβ / CTFα C83 / CTFβ C99 / C99/ C83 / [Aβ] / Aβ40 / Aβ42 / Aβ42/40 / Aβ’ / Aβ<40 / Oligo / Fibril / P3 / AICD / Experimental system / N / Ref
KM670/671NL Swedish / Normalised to full length APP / ↓ / Aβ / ↑ / ↑ / ↑x5 / M17 cell culture / 3 replicates / [1, 2]
Not significantly different to WT / 14.5 ± 3.3 ng/ml / Human CSF / (4 AD, 2 pre-symptomatic / [3]
↑ / ↑ x2.2 / Rat hippocampal neurons / 3 replicates / [4]
↑ / ↑ 18,653 ±1759 pg/ml / ↑ 1,380 ±47 pg/ml / ↓ 7.4 ±0.5 % / HEK293 / 4 replicates / [5]
↑ / ↑ x6-8 / ↓ / HEK293, CHO cell culture / 4 replicates / [6]
↑ / ↑ / ↓ / Human fibroblasts / 5 cell lines / [7]
Longer forms of APP increased but not APP695 / ↑ / ↑x~2.7 / Human fibroblasts / 3 cell lines; at least 6 measures / [8]
=
518 ±33 ng/ml / ↑41.4 ±5.1 ng/ml / ↑3.11 0.69 ng/ml / 293T / 3 replicates one experiment / [9]
↑675±59 fmol/ml / ↑59.1±4.9 fmol/ml / 8.8±0.9 % = / HEK293 cells / Not given / [10]
% of control / ↑ / ↓ / No change / ↑ / ↑ / ↑ / ↑ / no change / HEK293 cells / 3 or 4 replicates / [11]
% of control / ↑482% / TSM1 neurons / 4 / [11]
↑ / ↑57 ±3 / 67 ±10 pmol / Human plasma / 7 pre-symptomatic/ 5 AD / [12]
A673T / ↑ 564 ±21 ng/ml / ↓50% 8.1 ±0.7 ng/ml / ↓ 40% / 1.5 ±0.1 ng/ml / 0.14 ±0.02 ng/ml / ↓ / 293T / 3 replicates from one experiment / [13-15]
Normalised to human full length APP / ↓0.65±0.14 M / ↓0.81 ±0.21 M / ↓0.001±0 M / ↓0.27±0.02 M / ↓ / ↓~2 ng/ml / ↓~0.2 ng/ml / Aβ40↓ Aβ42= / Primary neurons / 3 replicates from 3 experiments / [16]
A673V / Increased Aβ40 (not Aβ42) fibrils; amyloid deposits contain both Aβ40 and Aβ42; large plaque size and vessel association; homozygous only / ↓ 476 ±2 ng/ml / ↑ 51.5 ±4.4 ng/ml / ↑ 10.4 ±0.7 ng/ml / ↑ 0.72 0.08 ng/ml / 293T / 3 replicates from one experiment / [13, 16-21]
Normalised with respect to human full lengthAPP / 0.92±0.12 M = / ↓0.31±0.07 M / ↑1.02±0.02 M / ↑1.04±0.02 M / ↑ / ↑~8 ng/ml / ↑~0.9 ng/ml / Aβ40↑ Aβ42= / Primary neurons (Mouse) / 3 replicates 3 experiments / [16]
Heterozygotes showed slower fibrillogenesis compared to wt; Aβ42 faster than Aβ40 / ↓151 pg/ml / human CSF / 1 AD / [17]
↑426.5 pg/ml / ↑45.9 pg/ml / human plasma / 1 AD / [17]
2.5 fold increase in sAPPβ:sAPPα ratio; normalized to the number of cells / ↑x2.5 / ↑20.2 pg/ml / ↑2.9pg/ml / 0.1 No change / Human fibroblasts / 4 replicates / [17]
Normalised to full length APP signal intensity / ↑ / ↑ x1.9 ±0.2 / ↑85.3 ±8.6 pg/ml / ↑9.9 ±1.3 pg/ml / 0.1 No change / ↑ Aβ11-40 27.3 ±2.4, Aβ11-42 45.7 ±8.4 / ↑ / CHO cells / 7 replicates / [17]
↑863.4 ±32.6 pg/ml / ↑78.1 ±22.9 pg/ml / 0.1 No change / ↑ Aβ11-40 233.8 ±16.6, Aβ11-42 198.5 ±6.6 / COS7 cells / 7 replicates / [17]
↑Aβ38 / Human brain / 10 FAD with APP mutations, 6 FAD with PSEN1 or PSEN2 mutations, 4 DS, 12 SAD, 3 controls / [22]
H677R English / [23]
No change / No change / No change / No change / HEK293 cells / 6 replicates / [24]
D678H Taiwanese / Normalised to WT / No change / ↑ / ↑ / ↑ x10.3 / ↑ x1.5 / ↑ x2.4 / ↑ / Aβ40↓ Aβ42↑ / Aβ40↑ Aβ42↓ / HEK293 cells / 3 replicates / [25]
Increased full length APP via lysosome; novel FAD mechanism relevant to SAD / ↑ / ↑ / ↑ / ↑ / HEK293 cells / 6 replicates / [24]
D678N Tottori / No change / No change / No change / No change / HEK293 cells / 6 replicates / [24, 26]
E682K Leuven / Shifts β’ to β-pathway processing / ↑ x2±3 / ↑ x2±3 / ↑ / ↑ 604.6 pg/ml / ↑ 94.6 pg/ml / ↑ / ↓ / No change / No change / CHO cell culture / 3 / [27]
Normalised to full length APP; β'-cleavage C89 ~24% CTFs / ↑ / ↑ x2±3 / No chamge / ↑ x2±3 / ↑ / ↑ 1005.3 ±10.1 pg/ml / ↑ 189.9 ±5.1 pg/ml / ↑ / ↓ / No change / No change / Primary neurons / 3 / [27]
Normalised to full length APP / 986±255.8 /368±63.7 /165 pg/ml / No change / No change / human CSF / 7 controls/ 10 AD/ 1 FAD / [27]
K687N / Equimolar WT + mutant Aβs increase toxicity than either WT or mutant homo-oligomers / ↓ / human CSF / 1 mutation carrier / [28, 29]
Normalised to full length APP WT; increased Aβ37/38/39 / ↑ / ↓ 40±50% / ↓ 50% / ↓ 75% / ↓ x2 / ↑ / ↑ 50% / ↑ 50% / ↑ / ↑ / ↓ / HEK293 cells / 4-6 replicates / [28]
A692G Flemish / Plaques centred on vessels; mostly Aβ40 in cored amyloid deposits, diffuse amyloid deposits Aβ42; severe NFT pathology / Human brain tissue IHC and MALDI-TOF / 3 AD with APPmutations, 5 SAD, 3 AD with PSENs mutations, 1 HCHWA-D / [30-32]
Normalised to APP synthesis / ↑ 647±120.4 / ↑ 45.2±9.2 / ↑ 7.0±0.8 / CHO K1 / 3 measures from 2 replicates / [33]
Normalised to APP synthesis / ↑231.7 ±40.2 / ↑ 29.7±5.2 / ↑12.8±0.09 / HEK293 cells / 3 measures from 2 replicates / [33]
Normalised to APP synthesis / ↑ 23.4±0.3 / ↑ 2.6±0.2 / ↑ 10.9±0.8 / H4 / 3 measures from 2 replicates / [33]
Normalised to cellular APP / ↑ / ↑ x1.7 / Rat hippocampal neurons / 3 / [4]
Normalised to full length APP / ↑ / ↑621.3 ±27.2 pg/ml / ↑77.5 ±2.4 pg/ml / ↑ 0.1251±0.0039 / CHO / 3 / [27]
Normalised to full length APP / ↑ / ↑1049.2 ±42.7 pg/ml / ↑131.7 ±1.5 pg/ml / ↑ 0.1257 ±0.0037 / Primary neurons / 3 / [27]
A692G Flemish / ↑232.0±25 fmol/ml / ↑27.0±2.0 fmol/ml / ↑11.7±1.6 % / HEK293 cells / [10]
Percent of Aβ-type fragments / ↑33 / ↑16.6 / ↓50.5 / HEK293 cells / 3-9 replicates / [34]
Relative to WT / No change / No change / No change / ↑x2.3 / 4 replicates / [35]
ΔE693 E693del Osaka / Very low levels of amyloid on PiB MRI / [5, 36]
Aβ in mitochondria and ER; ER stress induced apoptosis / ↑ / COS7 cells / [36]
More resistant to degradation by Neprilysin and IDE / ↓ / ↓ 390 pg/ml / ↓ 22 pg/ml / ↓ (5.7) / ↑ / None / Human CSF / 5 AD, 12 other neurological disorders / [5]
↓ / ↓495±18 / ↓54±6 / No change / ↑ / None / HEK293 cells / 4 replicates / [5]
E693K Italian / No NFT; capillary CAA / [37, 38]
↓126±17 / ↓8.0±0.7 / ↓6.4±0.6 / Hek293 cells / Not given / [10]
↑Aβ38 / Human brain / 10 FAD with APP mutations, 6 FAD with PSEN1 or PSEN2 mutations, 4 DS, 12 SAD, 3 controls / [22]
E693Q Dutch / No NFT / [39-42]
Normalised to APP synthesis / ↓ 258±93.3 / ↓ 12.7±4.5 / ↓4.9±0.3 / CHO K1 / 3 measures from 2 replicates / [33]
Normalised to APP synthesis / ↓176.7±20.5 / ↓10.6±1.2 / ↓6±0.03 / HEK293 cells / 3 measures from 2 replicates / [33]
Normalised to APP synthesis / ↓ 10.7±0.7 / ↓ 0.7±0.1 / ↓ 6.6±0.9 / H4 / 3 measures from 2 replicates / [33]
147±12= fmol/ml / ↓9.6±0.7 fmol/ml / ↓6.6±0.6 % / HEK293 cells / Not given / [10]
Relative to WT / No change / No change / No change / No change / H4 cells / 4 replicates / [35]
↑Aβ38 / Human brain / 10 FAD with APP mutations, 6 FAD with PSEN1 or PSEN2 mutations, 4 DS, 12 SAD, 3 controls / [22]
E693G Arctic / Increased formation of Aβ40protofibrils / [43, 44]
Severe CAA, typical AD NFT, abundant amyloid plaques reactive with Aβ40 and Aβ42 / 2 AD / [44]
↓~100 fmol/ml / ↓~12 fmol/ml / Human plasma / 9 mutation carriers / [10]
149±3 = fmol/ml / ↓11.2±0.6 fmol/ml / ↓7.5±0.5 % / HEK293 cells / [10]
Compared to WT; Soluble Aβ oligomers caused neuronal death / ↑ / rat cortical neuron cultures / 4 replicates / [45]
↑Aβ38 / Human brain / 10 FAD with APP mutations, 6 FAD with PSEN1 or PSEN2 mutations, 4 DS, 12 SAD, 3 controls / [22]
D694N Iowa / Increased Aβ40 in diffuse plaques; NFTs and activated microglial in vessels / [46, 47]
Relative to WT / No change / No change / No change / No change / H4 cells / 4 replicates / [35]
L705V Italian / No amyloid plaques or tangles; vessels show both Aβ40 and Aβ42 / [48]
↑Aβ38 / Human brain / 10 FAD with APP mutations, 6 FAD with PSEN1 or PSEN2 mutations, 4 DS, 12 SAD, 3 controls / [22]
G709S / Shifts Aβ profile from Aβ40 to Aβ39 Aβ37 / ↓ / ↑ / HEK293 cells / [49]
A713T / Abundant NFT and plaques / No change / [50-54]
Heterozygous and homozygous; no dose effect / ↓ / ↑ / ↑ / Human plasma / 2 measures from 10 mutation carriers (2 homo- and 8 heterozygotes) 2 related non mutation carriers / [53]
↑Aβ38 / Human brain / 10 FAD with APP mutations, 6 FAD with PSEN1 or PSEN2 mutations, 4 DS, 12 SAD, 3 controls / [22]
A713V / [55, 56]
T714A Iranian / Long prodromal phase, epilepsy and autonomic failure / ↓193 pg/ml / Human CSF / [19, 57-60]
T714I Austrian / Diffuse amyloid plaques N-truncated Aβ; cored plaques and vessel walls full length Aβ; severe NFT neuronal loss and gliosis / Human brain tissue / 1 AD / [61-63]
Changes in P3 mirror Aβ; increase Aβ N-terminal truncation / No change / No change / ↓68% / ↑x3.5 / ↑x10.8 / HEK293T cells / 3 replicates / [61]
Normalised with respect to WT / ↑ / ↑ / ↓~20% / ↑ / ↑x8.20 / Primary neurons / 3-10 replicates / [64]
V715M French / Reduced [Aβ] due to Aβ40; no change in Aβ42; % of control / ↑ / ↑ / ↑ / no change / ↓ / ↓ / No change / ↑ / present / present / present / HEK293 cells / 3 or 4 replicates / [11, 65, 66]
% of control / ↓~75% / TSM1 neuronal cells / 8 / [11]
Normalised to WT / No change / No change / ↓~30% / No change / ↑ / Primary neurons / 3 replicates / [64]
V715A German / Increased Aβ42/Aβ40 ratio / [23, 58, 67]
Normalised to WT / No change / No change / ↓~55% / ↑ / ↑ / Primary neurons / 3-10 replicates / [64]
I716V Florida / 92.5 ± 3.0 pmol = / ↑13.5 ± 1.1 pmol / ↑14.6 ± 0.7 % / HEK293 cells / 2 wells in duplicate / [68]
↑138.7 ± 1.3 pmol / ↑19.8 ± 1.5 pmol / ↑14.3 ± 1.0 % / CHO cells / 2 wells in duplicate / [68]
Normalised to WT / ↓ / No change / No change / ↑ / ↑ / Primary neurons / 3-10 replicates / [64]
Normalised to Total Aβ / No change / x1.14 ±0.16 = / ↑x1.91 ±0.18 / 1.73 ±0.20 = / Aβ38↑x3.13 ±0.43 / No change / CHO cells / 3 replicates / [69]
No change / No change / Human H4 cells / [69]
I716F / Increased APP [CTF]; values relative to WT; reduced γ- and ε cleavages / ↓x0.5 / ↓x0.5 / ↑x2 / ↑x4 / ↓ / CHO cells / 3 replicates / [54, 70-72]
No change / ↓x0.12 ±0.03 / ↑x2.45 ±0.34 / ↑21.91 ±1.85 / ↓to 40.3% / CHO cells / 3 replicates / [69]
↑ / ↑ / Human H4 cells / [69]
Numerous plaques, CAA, NFT braak stage VI, N-truncated pyroglutamate Aβ, A/syn Lewy bodies, vascular and small cored amyloid plaques reactive for Aβ oligomers / ↑ / 1 / [72]
Intracellular Aβ; normalised to WT / No change / ↓0.15 ±0.05 / ↑2.37 ±0.4 / ↑18 ±3.6 / CHO cells / 3 replicates / [73]
I716T / [74]
No change / ↓x0.22 ±0.03 / ↑x2.69 ±0.30 / ↑x12.35 ±0.51 / Aβ38↑x3.44 ±0.59 / No change / CHO cells / 3 replicates / [69]
No change / No change / Human H4 cells / [69]
V717I London / Numerous amyloid plaques and NFT, variable CAA / [23, 65, 75-79]
Normalised to full length APP / ↓ / No change / ↓ / M17 / 3 replicates / [77]
Normalised to APP synthesis / ↓ 126.7±5.2 / ↑ 23.8±2.8 / ↑ 18.9±2.1 / CHO K1 / 3 measures from 2 replicates / [33]
Normalised to APP synthesis / ↓ 119.6±19.6 / ↑ 27.4±4.5 / ↑ 22.9±1.0 / HEK293 cells / 3 measures from 2 replicates / [33]
Normalised to WT / ↑ / ↑ / ↓ / ↑ / ↑x1.89 / Primary neurons / 3-10 replicates / [64]
↓68.6 ± 1.9 pmol / ↑11.4 ± 1.9 pmol / ↑16.6 ± 2.4 % / HEK293 cells / 2 wells analysed in duplicate / [68]
54.1 ± 1.3 pmol = / ↑9.5 ± 0.5 pmol / ↑17.5 ± 0.5 % / CHO cells / 2 wells analysed in duplicate / [68]
Increased APP [CTF]; reduced γ-secretase activity; values relative to WT / ↓ / ↓ / ↑ / ↑ / ↓ / CHO cells / 3 replicates / [70]
↑>650 pmol / ↑47 pmol / Human Plasma / 1 AD / [12]
↓0.58 ±0.09 / 0.99±0.4 = / ↑1.8 ±0.57 / CHO cells / 3 replicates / [73]
↑x1.8 / HEK293 cells / [61]
V717L Indiana / ↓ / ↑ / ↑ / [80-83]
Normalised to WT / ↑ / ↑ / ↓ / ↑ / ↑ / Primary neurons / 3-10 replicates / [64]
V717F Indiana / Increased Aβ42/Aβ40 ratio / [81, 84]
↓89±11 fmol/ml / ↑24.4±2.4 fmol/ml / ↑27.4±1.4 / HEK293 cells / [10]
V717G / [85, 86]
T719P / Reduced total Aβ Aβ1−40 Aβ1−42 with increase d
Aβ10−40 Aβ1−38 / ↓ / ↓ / ↓ / ↓ / ↓ Aβ11x ↑Aβ10x / ↓ / Human CSF / 1 APP p.T719P FAD, 10 controls, 2 PSENs FAD / [87]
L723P Australian / Increase in apoptosis relative to WT / ↑x1.9 ±0.8 / ↑x2 / CHO cells / Pooled conditioned media from several clones / [88]
K724N Belgian / No change / No change / ↓~30% / ↑x2 / ↑x2.6 / Aβ38 & Aβ39↑ Aβ37= / HEK293T cells / [89]
H733P / [71]
APP
duplication / Duplication size varies ; may not always be fully penetrant
Aβ42 reduced in CSF / ↓ / Human CSF / 4 familial and 1 sporadic APP duplication / [90]
Duplication of APP +15 other genes; Braak stage VI, Aβ plaques and CAA / ↑x1.5 / Human comparative / 5 families with early onset FAD / [91]
Several genes duplicated; AD pathology with CAA and ICH; strong intraneuronal Aβx-40 accumulation in CA1/2 hippocampal fields; increased presence of seizures similar to DSbut without DS clinical features / ↑ / Human case-control / 14 patients with APP duplication, 5 with detailed neuropathological characterisation / [92]
APP only duplicated;AD pathology and CAA; increased presence of seizures similar to DS / ↑ / ↑ / Human observational study / 111 early onset FAD / [93]
APP duplications not always fully penetrant / No Change / Epstein-Barr virus–transformed lymphoblastoid cells / 3 affected family members / [82]
APPpromoter mutations / Promoter region mutations can lead to variable increases in APP levels; some are similar to DS and APP duplication / [79, 94]
DS / Increased levels of APP – not all DS cases develop dementia / ↑ / [95-97]
Complex changes in levels of Aβ species; Aβ40 levels while initially higher in DS are reduced with DS dementia; Levels of Aβ42 and Aβ42/Aβ40 are initially lower but increase with DS dementia / [98]

Aβ: amyloid beta protein, AD: Alzheimer disease, APP: amyloid beta precursor protein, CAA: cerebral amyloid angiopathy, CTF: carboxy terminal fragments, DS: Down syndrome, ICH: intra-cerebral haemorrhage, NFT: neurofibrillary tangles, SP: senile plaques (amyloid), WT: wild type

[1]Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1992;1:345-7.

[2]Mullan M, Tsuji S, Miki T, Katsuya T, Naruse S, Kaneko K, et al. Clinical comparison of Alzheimer's disease in pedigrees with the codon 717 Val-->Ile mutation in the amyloid precursor protein gene. Neurobiol Aging 1993;14:407-19.

[3]Lannfelt L, Basun H, Vigo-Pelfrey C, Wahlund LO, Winblad B, Lieberburg I, et al. Amyloid beta-peptide in cerebrospinal fluid in individuals with the Swedish Alzheimer amyloid precursor protein mutation. Neurosci Lett 1995;199:203-6.

[4]De Strooper B, Simons M, Multhaup G, Van Leuven F, Beyreuther K, Dotti CG. Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J 1995;14:4932-8.

[5]Tomiyama T, Nagata T, Shimada H, Teraoka R, Fukushima A, Kanemitsu H, et al. A new amyloid beta variant favoring oligomerization in Alzheimer's-type dementia. Ann Neurol 2008;63:377-87.

[6]Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 1992;360:672-4.

[7]Citron M, Vigo-Pelfrey C, Teplow DB, Miller C, Schenk D, Johnston J, et al. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc Natl Acad Sci U S A 1994;91:11993-7.

[8]Johnston JA, Cowburn RF, Norgren S, Wiehager B, Venizelos N, Winblad B, et al. Increased beta-amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines from family members with the Swedish Alzheimer's disease APP670/671 mutation. FEBS Lett 1994;354:274-8.

[9]Johansson AS, Berglind-Dehlin F, Karlsson G, Edwards K, Gellerfors P, Lannfelt L. Physiochemical characterization of the Alzheimer's disease-related peptides A beta 1-42Arctic and A beta 1-42wt. FEBS J 2006;273:2618-30.

[10]Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci 2001;4:887-93.

[11]Ancolio K, Dumanchin C, Barelli H, Warter JM, Brice A, Campion D, et al. Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 --> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer's disease. Proc Natl Acad Sci U S A 1999;96:4119-24.

[12]Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 1996;2:864-70.

[13]Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 2012;488:96-9.

[14]Peacock ML, Murman DL, Sima AA, Warren JT, Jr., Roses AD, Fink JK. Novel amyloid precursor protein gene mutation (codon 665Asp) in a patient with late-onset Alzheimer's disease. Ann Neurol 1994;35:432-8.

[15]Cruchaga C, Haller G, Chakraverty S, Mayo K, Vallania FL, Mitra RD, et al. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer's disease families. PLoS ONE 2012;7:e31039.

[16]Benilova I, Gallardo R, Ungureanu AA, Castillo Cano V, Snellinx A, Ramakers M, et al. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-beta (Abeta) aggregation. J Biol Chem 2014;289:30977-89.

[17]Di Fede G, Catania M, Morbin M, Rossi G, Suardi S, Mazzoleni G, et al. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 2009;323:1473-7.

[18]Catania M, Di Fede G, Tonoli E, Benussi L, Pasquali C, Giaccone G, et al. Mirror Image of the Amyloid-beta Species in Cerebrospinal Fluid and Cerebral Amyloid in Alzheimer's Disease. J Alzheimers Dis 2015;47:877-81.

[19]Lindquist SG, Schwartz M, Batbayli M, Waldemar G, Nielsen JE. Genetic testing in familial AD and FTD: mutation and phenotype spectrum in a Danish cohort. Clin Genet 2009;76:205-9.

[20]Giaccone G, Morbin M, Moda F, Botta M, Mazzoleni G, Uggetti A, et al. Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features. Acta Neuropathol 2010;120:803-12.

[21]Messa M, Colombo L, del Favero E, Cantu L, Stoilova T, Cagnotto A, et al. The peculiar role of the A2V mutation in amyloid-beta (Abeta) 1-42 molecular assembly. J Biol Chem 2014;289:24143-52.

[22]Moro ML, Giaccone G, Lombardi R, Indaco A, Uggetti A, Morbin M, et al. APP mutations in the Abeta coding region are associated with abundant cerebral deposition of Abeta38. Acta Neuropathol 2012;124:809-21.

[23]Janssen JC, Beck JA, Campbell TA, Dickinson A, Fox NC, Harvey RJ, et al. Early onset familial Alzheimer's disease: Mutation frequency in 31 families. Neurology 2003;60:235-9.

[24]Lin YC, Wang JY, Wang KC, Liao JY, Cheng IH. Differential regulation of amyloid precursor protein sorting with pathological mutations results in a distinct effect on amyloid-beta production. J Neurochem 2014;131:407-12.

[25]Chen WT, Hong CJ, Lin YT, Chang WH, Huang HT, Liao JY, et al. Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies. PLoS ONE 2012;7:e35807.

[26]Wakutani Y, Watanabe K, Adachi Y, Wada-Isoe K, Urakami K, Ninomiya H, et al. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer's disease. J Neurol Neurosurg Psychiatry 2004;75:1039-42.

[27]Zhou L, Brouwers N, Benilova I, Vandersteen A, Mercken M, Van Laere K, et al. Amyloid precursor protein mutation E682K at the alternative beta-secretase cleavage beta'-site increases Abeta generation. EMBO Mol Med 2011;3:291-302.

[28]Kaden D, Harmeier A, Weise C, Munter LM, Althoff V, Rost BR, et al. Novel APP/Abeta mutation K16N produces highly toxic heteromeric Abeta oligomers. EMBO Mol Med 2012;4:647-59.

[29]Stenh C, Nilsberth C, Hammarback J, Engvall B, Naslund J, Lannfelt L. The Arctic mutation interferes with processing of the amyloid precursor protein. Neuroreport 2002;13:1857-60.

[30]Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F, et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet 1992;1:218-21.

[31]Roks G, Van Harskamp F, De Koning I, Cruts M, De Jonghe C, Kumar-Singh S, et al. Presentation of amyloidosis in carriers of the codon 692 mutation in the amyloid precursor protein gene (APP692). Brain 2000;123 ( Pt 10):2130-40.

[32]Kumar-Singh S, Julliams A, Nuydens R, Ceuterick C, Labeur C, Serneels S, et al. In vitro studies of Flemish, Dutch, and wild-type beta-amyloid provide evidence for two-staged neurotoxicity. Neurobiol Dis 2002;11:330-40.

[33]De Jonghe C, Zehr C, Yager D, Prada CM, Younkin S, Hendriks L, et al. Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol Dis 1998;5:281-6.

[34]Haass C, Hung AY, Selkoe DJ, Teplow DB. Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem 1994;269:17741-8.

[35]Van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW. Pathogenic effects of D23N Iowa mutant amyloid beta -protein. J Biol Chem 2001;276:32860-6.

[36]Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL, et al. Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 2011;89:1031-42.

[37]Bugiani O, Giaccone G, Rossi G, Mangieri M, Capobianco R, Morbin M, et al. Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Arch Neurol 2010;67:987-95.

[38]Van Nostrand WE, Melchor JP, Romanov G, Zeigler K, Davis J. Pathogenic effects of cerebral amyloid angiopathy mutations in the amyloid beta-protein precursor. Ann N Y Acad Sci 2002;977:258-65.

[39]Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 1990;248:1124-6.

[40]Van Broeckhoven C, Haan J, Bakker E, Hardy JA, Van Hul W, Wehnert A, et al. Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 1990;248:1120-2.

[41]Fernandez-Madrid I, Levy E, Marder K, Frangione B. Codon 618 variant of Alzheimer amyloid gene associated with inherited cerebral hemorrhage. Ann Neurol 1991;30:730-3.

[42]Rozemuller AJ, Roos RA, Bots GT, Kamphorst W, Eikelenboom P, Van Nostrand WE. Distribution of beta/A4 protein and amyloid precursor protein in hereditary cerebral hemorrhage with amyloidosis-Dutch type and Alzheimer's disease. Am J Pathol 1993;142:1449-57.

[43]Kamino K, Orr HT, Payami H, Wijsman EM, Alonso ME, Pulst SM, et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet 1992;51:998-1014.

[44]Basun H, Bogdanovic N, Ingelsson M, Almkvist O, Naslund J, Axelman K, et al. Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. Arch Neurol 2008;65:499-505.

[45]Yamamoto N, Fukata Y, Fukata M, Yanagisawa K. GM1-ganglioside-induced Abeta assembly on synaptic membranes of cultured neurons. Biochim Biophys Acta 2007;1768:1128-37.

[46]Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 2001;49:697-705.

[47]Shin Y, Cho HS, Rebeck GW, Greenberg SM. Vascular changes in Iowa-type hereditary cerebral amyloid angiopathy. Ann N Y Acad Sci 2002;977:245-51.

[48]Obici L, Demarchi A, de Rosa G, Bellotti V, Marciano S, Donadei S, et al. A novel AbetaPP mutation exclusively associated with cerebral amyloid angiopathy. Ann Neurol 2005;58:639-44.

[49]Schulte EC, Fukumori A, Mollenhauer B, Hor H, Arzberger T, Perneczky R, et al. Rare variants in beta-Amyloid precursor protein (APP) and Parkinson's disease. Eur J Hum Genet 2015;23:1328-33.

[50]Armstrong J, Boada M, Rey MJ, Vidal N, Ferrer I. Familial Alzheimer disease associated with A713T mutation in APP. Neurosci Lett 2004;370:241-3.

[51]Rossi G, Giaccone G, Maletta R, Morbin M, Capobianco R, Mangieri M, et al. A family with Alzheimer disease and strokes associated with A713T mutation of the APP gene. Neurology 2004;63:910-2.

[52]Bernardi L, Geracitano S, Colao R, Puccio G, Gallo M, Anfossi M, et al. AbetaPP A713T mutation in late onset Alzheimer's disease with cerebrovascular lesions. J Alzheimers Dis 2009;17:383-9.

[53]Conidi ME, Bernardi L, Puccio G, Smirne N, Muraca MG, Curcio SA, et al. Homozygous carriers of APP A713T mutation in an autosomal dominant Alzheimer disease family. Neurology 2015;84:2266-73.

[54]Pera M, Alcolea D, Sanchez-Valle R, Guardia-Laguarta C, Colom-Cadena M, Badiola N, et al. Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease. Acta Neuropathol 2013;125:201-13.

[55]Jones CT, Morris S, Yates CM, Moffoot A, Sharpe C, Brock DJ, et al. Mutation in codon 713 of the beta amyloid precursor protein gene presenting with schizophrenia. Nat Genet 1992;1:306-9.

[56]Forsell C, Lannfelt L. Amyloid precursor protein mutation at codon 713 (Ala-->Val) does not cause schizophrenia: non-pathogenic variant found at codon 705 (silent). Neurosci Lett 1995;184:90-3.

[57]Pasalar P, Najmabadi H, Noorian AR, Moghimi B, Jannati A, Soltanzadeh A, et al. An Iranian family with Alzheimer's disease caused by a novel APP mutation (Thr714Ala). Neurology 2002;58:1574-5.

[58]Zekanowski C, Styczynska M, Peplonska B, Gabryelewicz T, Religa D, Ilkowski J, et al. Mutations in presenilin 1, presenilin 2 and amyloid precursor protein genes in patients with early-onset Alzheimer's disease in Poland. Exp Neurol 2003;184:991-6.

[59]Lindquist SG, Nielsen JE, Stokholm J, Schwartz M, Batbayli M, Ballegaard M, et al. Atypical early-onset Alzheimer's disease caused by the Iranian APP mutation. J Neurol Sci 2008;268:124-30.

[60]Noroozian M, Azadfar P, Akbari L, Sadeghi A, Houshmand M, Vousooghi N, et al. Early-onset Alzheimer's disease in two Iranian families: a genetic study. Dement Geriatr Cogn Disord 2014;38:330-6.