Structures of 1-Adamantylphosphines: Gas Electron Diffraction and Computational Studies

Structures of 1-Adamantylphosphines: Gas Electron Diffraction and Computational Studies

Gas-phase structures of dithietane derivatives, including an electron diffraction study of 1,3-dithietane 1,1,3,3-tetraoxide

Derek A. Wann, Andrzej Bil, Paul D. Lane, Heather E. Robertson, David W. H. Rankin and Eric Block

Electronic supplementary material

Table S1 Nozzle-to-film distances / mm, weighting functions / nm–1, scale factors, correlation parameters and electron wavelengths / pm used in the electron diffraction study of 1,3-dithietane 1,1,3,3-tetraoxide (1).

Nozzle-to-film distance / Δs / smin / sw1 / sw2 / smax / Scale
factora / Correlation parameter / Electron wavelengthb
254.0 / 1 / 30 / 40 / 129 / 150 / 0.693(5) / 0.493 / 6.18
95.5 / 2 / 120 / 140 / 275 / 320 / 0.729(21) / 0.481 / 6.18

aValues in parentheses are the estimated standard deviations. bDetermined by reference to the scattering pattern of benzene.

Table S2Selected parameters characterising the bonding situation in 2. Distances (r) are in picometres, electron densities (ρ) and their Laplacians (2ρ) and energy densities calculated at the (3,–1) bond critical point (H) are in a.u., ε is the ellipticity of electron density. DI(A,B) is the delocalisation index calculated for atoms A and B, V(A,B) and V(A) are the electron populations of the ELF basins representing a bond A–B, or a lone pair centred on atom A, respectively. Q(A) is the AIM charge of atom A.

rAB / ρ / 2ρ / ε / H / DI(A,B) / V(A,B)//V(A) / Q(A)
C–S1 / 1.817 / 0.198 / –0.355 / 0.038 / –0.135 / 0.835 / 2.03
C–S2 / 1.888 / 0.167 / –0.216 / 0.070 / –0.097 / 0.909 / 1.80
C–H / 1.087 / 0.290 / –1.146 / 0.006 / –0.328 / 0.923 / 2.05
C–H′ / 1.085 / 0.292 / -1.157 / 0.006 / –0.325 / 0.941 / 2.08
S1–O1 / 1.451 / 0.303 / +0.865 / 0.054 / –0.400 / 1.138 / 1.79
S1–O2 / 1.454 / 0.302 / +0.823 / 0.056 / –0.399 / 1.126 / 1.75
S2–O3 / 1.499 / 0.279 / +0.543 / 0.003 / –0.365 / 1.364 / 1.51
lp1(O1) / 2.13
lp2(O1) / 1.88
lp3(O1) / 1.94
lp1(O2) / 2.37
lp2(O2) / 2.40
lp3(O2) / 1.23
lp1(O3) / 3.15
lp2(O3) / 2.93
C / –0.247
S1 / +2.660
S2 / +1.375
O1 / –1.341
O2 / –1.334
O3 / –1.275

Table S3 Selected parameters characterising the bonding situation in3.

rAB / ρ / 2ρ / ε / H / DI(A,B) / V(A,B) / Q(A)
C–S1 / 1.830 / 0.194 / –0.336 / 0.029 / –0.129 / 0.820 / 2.03
C–S2 / 1.845 / 0.171 / –0.225 / 0.090 / –0.105 / 1.087 / 1.57
C–H / 1.086 / 0.294 / –1.171 / 0.001 / –0.331 / 0.936 / 2.06
S–O / 1.453 / 0.302 / +0.854 / 0.056 / –0.398 / 1.131 / 1.78
lp(S) / 2.26
lp1(O) / 2.15
lp2(O) / 1.86
lp3(O) / 1.95
C / –0.180
S1 / +2.653
S2 / +0.063
O / –1.339

Table S4Selected parameters characterising the bonding situation in 4.

rAB / ρ / 2ρ / ε / H / DI(A,B) / V(A,B) / Q(A)
C–S / 1.861 / 0.176 / –0.251 / 0.050 / –0.109 / 0.931 / 1.84
C–H / 1.089 / 0.286 / –1.122 / 0.002 / –0.321 / 0.916 / 2.03
C–H′ / 1.085 / 0.292 / –1.152 / 0.006 / –0.329 / 0.954 / 2.10
S–O / 1.494 / 0.277 / +0.518 / 0.006 / –0.362 / 1.359 / 1.49
lp(S) / 2.35
lp1(O) / 3.18
lp2(O) / 2.39
C / –0.244
S / +1.354
O / –1.280

Table S5Selected parameters characterising the bonding situation in 5.

rAB / ρ / 2ρ / ε / H / DI(A,B) / V(A,B) / Q(A)
C–S1 / 1.861 / 0.177 / –0.255 / 0.055 / –0.109 / 0.925 / 1.85
C–S2 / 1.863 / 0.175 / –0.251 / 0.092 / –0.107 / 0.927 / 1.81
C–H / 1.089 / 0.287 / –1.116 / 0.004 / –0.320 / 0.933 / 2.05
C–H′ / 1.085 / 0.291 / –1.153 / 0.003 / –0.328 / 0.944 / 2.08
S1–O1 / 1.495 / 0.277 / +0.528 / 0.004 / –0.362 / 1.354 / 1.50
S1–O2 / 1.497 / 0.277 / +0.488 / 0.005 / –0.363 / 1.352 / 1.48
lp(S1) / 2.33
lp(S2) / 2.36
lp1(O1) / 2.90
lp2(O1) / 3.19
lp1(O2) / 2.93
lp2(O2) / 3.19
C / –0.236
S1 / +1.379
S2 / +1.353
O1 / –1.285
O2 / –1.287

Table S6 Selected parameters characterising the bonding situation in 6

rAB / ρ / 2ρ / ε / H / DI(A,B) / V(A,B) / Q(A)
C–S1 / 186.0 / 0.177 / –0.256 / 0.069 / –0.110 / 0.922 / 1.86
C–S2 / 183.3 / 0.175 / –0.238 / 0.110 / –0.110 / 1.094 / 1.60
C–H / 108.9 / 0.291 / –1.140 / 0.013 / –0.325 / 0.930 / 2.06
C–H′ / 108.5 / 0.294 / –1.168 / 0.007 / –0.332 / 0.951 / 2.09
S1–O1 / 149.3 / 0.3 / +0.8 / 0.0 / –0.3 / 1.348 / 1.50
lp(S1) / 2.32
lp1(S2) / 2.25
lp2(S2) / 2.26
lp1(O) / 3.16
lp2(O) / 2.92
C / –0.178
S1 / +1.358
S2 / +0.043
O / –1.295

Table S7 Interatomic distances (ra / pm), refined and calculated amplitudes of vibration (uh1/ pm) and perpendicular corrections (kh1 / pm) for the SARACEN-restrained D2h-symmetric GED structure of 1,3-dithietane 1,1,3,3-tetraoxide (1).a

Atom pair / ra / uh1 (GED)b / kh1 / uh1
u1 / C(2)−H(7) / 108.2(2) / 7.8(6) / 0.4 / 7.6
u2 / C(2)−H(8) / 108.2(2) / 7.8(tied to u1) / 0.4 / 7.6
u3 / S(1)−O(5) / 142.9(1) / 4.6(tied to u4) / 0.1 / 3.7
u4 / S(1)−O(6) / 142.9(1) / 4.6(2) / 0.1 / 3.7
u6 / S(1)−C(2) / 181.9(1) / 6.8(2) / 0.2 / 6.2
u7 / C(2)−S(3) / 181.9(1) / 6.8(tied to u6) / 0.2 / 6.2
u5 / H(7)···H(8) / 182.1(10) / 12.3(fixed) / 0.2 / 12.3
u10 / S(1)···H(7) / 242.8(8) / 12.5(tied to u14) / –0.2 / 12.7
u11 / S(3)···H(7) / 242.8(8) / 12.5(tied to u14) / –0.2 / 12.7
u8 / S(1)···H(8) / 243.2(2) / 12.4(tied to u14) / –0.1 / 12.7
u9 / S(3)···H(8) / 243.2(2) / 12.4(tied to u14) / –0.1 / 12.7
u12 / C(2)···C(4) / 248.1(7) / 7.3(tied to u14) / –2.6 / 7.5
u13 / O(5)···O(6) / 249.3(6) / 6.5(tied to u14) / 0.2 / 6.6
u14 / S(1)···S(3) / 260.5(5) / 6.4(3) / –2.9 / 6.5
u15 / C(2)···O(5) / 268.1(3) / 9.6(tied to u14) / 0.1 / 9.8
u16 / C(2)···O(9) / 268.1(3) / 9.6(tied to u14) / 0.1 / 9.8
u18 / C(2)···O(10) / 268.1(3) / 9.7(tied to u14) / 0.1 / 9.9
u17 / C(2)···O(6) / 268.1(3) / 9.7(tied to u14) / 0.1 / 9.9
u21 / O(5)···H(7) / 276.5(11) / 20.4(tied to u14) / 3.4 / 20.7
u22 / H(7)···O(9) / 276.5(11) / 20.4(tied to u14) / 3.4 / 20.7
u19 / O(6)···H(8) / 277.4(4) / 19.8(tied to u14) / 3.7 / 20.2
u20 / H(8)···O(10) / 277.4(4) / 19.8(tied to u14) / 3.7 / 20.2
u24 / C(2)···H(11) / 314.9(13) / 20.7(tied to u23) / –5.9 / 20.3
u23 / C(2)···H(12) / 315.3(7) / 26.3(24) / –5.1 / 25.8
u28 / O(5)···H(8) / 345.2(2) / 11.6(tied to u27) / –2.5 / 14.1
u29 / H(8)···O(9) / 345.2(2) / 11.6(tied to u27) / –2.5 / 14.1
u26 / H(7)···O(10) / 346.0(3) / 12.4(tied to u27) / –1.6 / 15.1
u25 / O(6)···H(7) / 346.0(3) / 12.4(tied to u27) / –1.6 / 15.1
u31 / S(1)···O(10) / 349.5(2) / 18.3(tied to u27) / –5.6 / 22.1
u27 / S(1)···O(9) / 349.9(2) / 22.1(4) / –4.8 / 26.7
u32 / H(7)···H(11) / 351.2(30) / 47.3(fixed) / –9.3 / 47.3
u30 / H(8)···H(12) / 352.5(7) / 55.9(fixed) / –7.0 / 55.9
u35 / O(6)···O(10) / 387.6(8) / 54.7(tied to u33) / –8.7 / 58.2
u33 / O(5)···O(9) / 388.4(8) / 60.5(59) / –6.2 / 64.3
u34 / H(7)···H(12) / 398.7(11) / 18.2(fixed) / –10.7 / 18.2
u36 / O(5)···O(10) / 463.7(4) / 14.5(11) / –10.3 / 13.6

a Estimated standard deviations, as obtained in the least squares refinement, are given in parentheses. b Amplitudes not refined were fixed at the values obtained using the force field calculated at the B3LYP/6-311++G(d,p) level.

Table S8 Interatomic distances (ra / pm), refined and calculated amplitudes of vibration (uh1/ pm) and perpendicular corrections (kh1 / pm) for the SARACEN-restrained puckeredC2v-symmetric GED structure of 1,3-dithietane 1,1,3,3-tetraoxide (1).a

Atom pairb / ra / uh1 (GED) / kh1 / uh1
u1 / C(2)−H(7) / 108.2(2) / 7.8(6) / 0.4 / 7.6
u2 / C(2)−H(8) / 108.2(2) / 7.8(tied to u1) / 0.4 / 7.6
u3 / S(1)−O(5) / 142.9(5) / 4.6(tied to u4) / 0.1 / 3.7
u4 / S(1)−O(6) / 143.0(5) / 4.6(2) / 0.1 / 3.7
u6 / S(1)−C(2) / 181.9(1) / 6.8(2) / 0.2 / 6.2
u7 / C(2)−S(3) / 181.9(1) / 6.8(tied to u6) / 0.2 / 6.2
u5 / H(7)···H(8) / 182.2(10) / 12.3(fixed) / 0.2 / 12.3
u10 / S(1)···H(7) / 239.8(36) / 12.2(tied to u14) / –0.2 / 12.7
u11 / S(3)···H(7) / 239.8(36) / 12.2(tied to u14) / –0.2 / 12.7
u8 / S(1)···H(8) / 246.1(33) / 12.1(tied to u14) / –0.1 / 12.7
u9 / S(3)···H(8) / 246.1(33) / 12.1(tied to u14) / –0.1 / 12.7
u12 / C(2)···C(4) / 247.6(8) / 7.1(tied to u14) / –2.6 / 7.5
u13 / O(5)···O(6) / 249.3(7) / 6.3(tied to u14) / 0.2 / 6.6
u14 / S(1)···S(3) / 260.2(5) / 6.2(4) / –2.9 / 6.5
u15 / C(2)···O(5) / 268.1(5) / 9.4(tied to u14) / 0.1 / 9.8
u16 / C(2)···O(9) / 268.1(5) / 9.4(tied to u14) / 0.1 / 9.8
u18 / C(2)···O(10) / 268.2(5) / 9.5(tied to u14) / 0.1 / 9.9
u17 / C(2)···O(6) / 268.2(5) / 9.5(tied to u14) / 0.1 / 9.9
u21 / O(5)···H(7) / 272.7(50) / 19.9(tied to u14) / 3.4 / 20.7
u22 / H(7)···O(9) / 272.7(50) / 19.9(tied to u14) / 3.4 / 20.7
u19 / O(6)···H(8) / 281.6(49) / 19.3(tied to u14) / 3.7 / 20.2
u20 / H(8)···O(10) / 281.6(49) / 19.3(tied to u14) / 3.7 / 20.2
u23 / C(2)···H(12) / 313.6(53) / 26.5(1) / –5.1 / 25.8
u24 / C(2)···H(11) / 315.4(48) / 20.8(tied to u23) / –5.9 / 20.3
u25 / O(6)···H(7) / 342.2(21) / 11.8(tied to u27) / –1.6 / 15.1
u26 / H(7)···O(10) / 342.2(21) / 11.8(tied to u27) / –1.6 / 15.1
u27 / S(1)···O(9) / 342.7(37) / 21.0(1) / –4.8 / 26.7
u30 / H(8)···H(12) / 348.9(134) / 55.9(fixed) / –7.0 / 55.9
u29 / H(8)···O(9) / 348.9(20) / 11.1(tied to u27) / –2.5 / 14.1
u28 / O(5)···H(8) / 348.9(20) / 11.1(tied to u27) / –2.5 / 14.1
u32 / H(7)···H(11) / 353.5(127) / 47.3(fixed) / –9.3 / 47.3
u31 / S(1)···O(10) / 356.1(31) / 17.4(tied to u27) / –5.6 / 22.1
u33 / O(5)···O(9) / 368.3(97) / 61.6(1) / –6.2 / 64.3
u34 / H(7)···H(12) / 398.2(12) / 18.2(fixed) / –10.7 / 18.2
u35 / O(6)···O(10) / 405.6(91) / 55.7(tied to u33) / –8.7 / 58.2
u36 / O(5)···O(10) / 462.8(8) / 14.7(11) / –10.3 / 13.6

a Estimated standard deviations, as obtained in the least squares refinement, are given in parentheses. b Amplitudes not refined were fixed at the values obtained using the force field calculated at the B3LYP/6-311++G(d,p) level.

Table S9 Least-squares correlation matrix (×100) for 1,3-dithietane 1,1,3,3-tetraoxide (1) for the planar-ring structure.a

p5 / p9 / u6 / u14 / k2
p1 / 55
p5 / 100 / –81 / –80
p9 / 100 / 87
u4 / 71 / 89
u6 / 79

a Only elements with absolute values ≥ 50% are shown.k2is a scale factor.

Table S10 Least-squares correlation matrix (×100) for 1,3-dithietane 1,1,3,3-tetraoxide (1) for puckered-ring structure.a

p6 / u6 / u14 / u27 / k2
p5 / –64 / 61
p6 / 100 / –92
p9 / 88
u4 / 72 / 90
u6 / 100 / 80

a Only elements with absolute values ≥ 50% are shown. k2is a scale factor.

Table S11 GED Cartesian coordinates (in pm) for planar 1,3-dithietane 1,1,3,3-tetraoxide (1).

Atom / x / y / z
S(1) / 0.00 / 131.76 / 0.00
C(2) / –125.47 / 0.00 / 0.00
S(3) / 0.00 / –131.76 / 0.00
C(4) / 125.47 / 0.00 / 0.00
O(5) / 0.00 / 201.83 / 124.65
O(6) / 0.00 / 201.83 / –124.65
H(7) / –183.28 / 0.00 / 91.61
H(8) / –183.99 / 0.00 / –91.16
O(9) / 0.00 / –201.83 / 124.65
O(10) / 0.00 / –201.83 / –124.65
H(11) / 183.28 / 0.00 / 91.61
H(12) / 183.99 / 0.00 / –91.16

Table S12 GED Cartesian coordinates (in pm) for puckered 1,3-dithietane 1,1,3,3-tetraoxide (1).

Atom / x / y / z
S(1) / 0.00 / 131.62 / 9.86
C(2) / –125.20 / 0.00 / 0.00
S(3) / 0.00 / –131.62 / 9.86
C(4) / 125.20 / 0.00 / 0.00
O(5) / 0.00 / 192.20 / 139.35
O(6) / 0.00 / 210.85 / –109.20
H(7) / –184.41 / 0.00 / 90.70
H(8) / –182.21 / 0.00 / –92.11
O(9) / 0.00 / –192.20 / 139.35
O(10) / 0.00 / –210.85 / –109.20
H(11) / 184.41 / 0.00 / 90.70
H(12) / 182.21 / 0.00 / –92.11

Table S13 Calculated Cartesian coordinates [MP2(full)/aug-cc-pVTZ; pm] for planar 1,3-dithietane 1,1,3,3-tetraoxide (1).

Atom / x / y / z
S(1) / –130.26 / 0.00 / 0.00
C(2) / 0.00 / 0.00 / 125.93
S(3) / 130.26 / 0.00 / 0.00
C(4) / 0.00 / 0.00 / –125.93
O(5) / –199.87 / 126.78 / 0.00
O(6) / –199.87 / –126.78 / 0.00
H(7) / 0.00 / 91.19 / 184.39
H(8) / 0.00 / –91.19 / 184.39
O(9) / 199.87 / 126.78 / 0.00
O(10) / 199.87 / –126.78 / 0.00
H(11) / 0.00 / 91.19 / –184.39
H(12) / 0.00 / –91.19 / –184.39

Energy = –1174.4966195Hartrees (not zero-point corrected)

Table S14 Calculated Cartesian coordinates [MP2(full)/aug-cc-pVTZ; pm] for puckered1,3-dithietane 1,1,3,3-tetraoxide (1).

Atom / x / y / z
S(1) / –135.82 / 49.50 / –0.02
C(2) / –5.80 / 40.68 / 125.84
S(3) / 124.50 / 44.52 / 0.02
C(4) / –5.77 / 40.54 / –125.83
O(5) / –195.69 / 181.15 / –0.03
O(6) / –214.78 / –71.68 / –0.02
H(7) / –4.14 / 127.64 / 189.49
H(8) / –7.62 / –54.39 / 178.82
O(9) / 189.36 / 173.78 / 0.02
O(10) / 198.76 / –79.59 / 0.03
H(11) / –4.08 / 128.40 / –190.07
H(12) / –7.56 / –53.60 / –178.36

Energy = –1174.4966236Hartrees (not zero-point corrected)

Figure S1 Experimental and difference (experimental minus theoretical) molecular-scattering intensities for 1,3-dithietane1,1,3,3-tetraoxide (1) for the planar structure.

Figure S2 Electron localisation function isosurfaces for 2 plotted for the value μ = 0.74. The localisation domains represent: C–H bonds [V(C–H) coloured in navy blue], S–C bonds [V(S–C) in light blue], S–O bonds [V(S–O) in green], lone pairs of electrons on oxygen atoms [Vi = 1,2,3(O) in red, yellow and magenta or Vi = 1,2(O) in red and yellow], a lone pair on the sulfur atom [V(S) in gold].

Figure S3 Electron localisation function isosurfaces for 3 plotted for the value μ = 0.74. The localisation domains represent: C–H bonds [V(C–H) coloured in navy blue], S–C bonds [V(S–C) in light blue], lone pairs of electrons on oxygen atoms [Vi = 1,2,3(O) in red, yellow and magenta], a lone pair on the sulfur atom [Vi = 1,2(S) in gold and white].

Figure S4 Electron localisation function isosurfaces for 4 plotted for the value μ = 0.74. The localisation domains represent: C–H bonds [V(C–H) coloured in navy blue], S–C bonds [V(S–C) in light blue], S–O bonds [V(S–O) in green], lone pairs of electrons on oxygen atoms [Vi = 1,2(O) in red and yellow], a lone pair on the sulfur atom [V(S) in gold].

Figure S5 Electron localisation function isosurfaces for 5 plotted for the value μ = 0.74. The localisation domains represent: C–H bonds [V(C–H) coloured in navy blue], S–C bonds [V(S–C) in light blue], S–O bonds [V(S–O) in green], lone pairs of electrons on oxygen atoms [Vi = 1,2(O) in red and yellow], a lone pair on the sulfur atoms [V(S) in gold].

Figure S6Electron localisation function isosurfaces plotted for the value μ= 0.74. The localisation domains in6 represent: C–H bonds [V(C–H) coloured in navy blue], S–C bonds [V(S–C) in light blue], S–O bonds [V(S–O) in green],lone pairs of electrons on the oxygen atoms[Vi=1,2(O) in red, yellow], the lone pairs on the sulfur atoms (Vi=1,2(S) in gold and white, or V(S) in gold].

1