Solution SAMPLE 6
Q.1
=
=
=
=
Q. 2 Let the median mc be double and construct the parallelogram ACBP. For a paralleglogram, we know : The sum of the squares of the diagonals of a parallelogram in equal to the sum of the squares of all of its sides.
We get :
Þ
Þ
Þ
Q.3 We know
The nth term of series
=
=
Now
… … …
S =
=
=
=
=
Q.4 Let the age of woman = x From the question :
it can be solved to get x = 18
Q.5 Solution :
Q. 6 From the symmetry the quadrilateral EKMP is a square
So, the desired are to be calculated in square EKMP plus four equal segments
DWKZ is equilateral,
i.e. Ð KWZ = 600
\ Ð XWK = 330
ÐMWZ = 330
So ÐKWM = 330
We have, area of the segment
S =
q is measured in radians
So, area of the segment = …(1)
For D WKM, by cosines law :
Þ
=
So, the desired area = Area of square + 4 x area of segment
=
=
Q.7
=
=
=
= 0
So, a = b, b = c, and c = a
So, a+b+c=1, gives
So,
= 1+1+1
= 3
and
=
=
Q. 8 The solution is
Lets know the power and number of digits.
No of digit
21 = 2 1
22 = 4 1
23 = 8 1
24 = 16 2
25 = 32 2
26 =64 2
27=128 2
28=256 3
29=512 3
210=1024 4
211=2048 4
212=4096 4
213=8192 4
214=16384 5
215=32768 5
216=65536 5
217=131072 6
218=262144 6
219 =524288 6
220 =1048576 7
221 =2097152 7
222 =4194304 7
223 =838868 7
224 = 16777216 8
225 = 33554432 8
226 = 67108864 8
227 = 134xxxxxx 9
228 = 268 xx xx xx 9
229 = 536 xx xx xx 9
230 = 1073 xx xx xx 10
231 = 2147 xx xx xx 10
232 = 4294 xx xx xx 10
233 = 8589 xx xx xx 10
234 = 17179 xx xx xx 11
235 = 34315 xx xx xx 11
236 = 68631 xx xx xx 11
237 = 137263 xx xx xx 12
238 = 27 xx xx xx xx xx 12
239 = 54 xx xx xx xx xx 12
240 = 108 xx xx xx xx xx 13
241 = 216 xx xx xx xx xx 13
242 = 432 xx xx xx xx xx 13
243 = 864 xx xx xx xx xx 13
244 = 1728 xx xx xx xx xx 14
The pattern
Power / 1 / 4 / 8 / 12 / 16No. of digit / 1 / 2 / 3 / 4 / 5
Power / 20 / 24 / 28 / 32 / 36
No. of digit / 7 / 8 / 9 / 10 / 11
Power / 40 / 44 / 48 / 52 / 56
No. of digit / 13 / 14 / 15 / 16 / 17
Power / 60 / 64 / 68 / 72 / 76
No. of digit / 19 / 20 / 21 / 22 / 23
Power / 1000 / 1004 / 1008 / 1012 / 1016
No. of digit / 301 / 302 / 303 / 304 / 305
So 21000 have 301 digits.
Q. 10 The solution using Pascals principle of triangles.
So numbers of routes – 110.