Standard Operating Procedure

Settlement Class: Pyrophorics

Print a copy and insert into your

Laboratory Safety Manual and Chemical Hygiene Plan.

Department: / Chemistry /
Date SOP was written: / 12/5/2012 /
Date SOP was approved by PI/lab supervisor: / 1/13/2013 /
Principal Investigator: / Richmond Sarpong /
Internal Lab Safety Coordinator/Lab Manager: / Rebecca Murphy /
Lab Phone: / 510-643-2485 /
Office Phone: / 510-643-6312 /
Emergency Contact: / Richmond Sarpong, 626-644-2407 /
(Name and Phone Number)
Location(s) covered by this SOP: / Latimer Hall: 834, 836, 837, 838, 839, 842, 847, 849, 907 /
(Building/Room Number)

Type of SOP: Process Hazardous Chemical Hazardous Class

Purpose

This is a chemical class SOP. Some uses of the chemicals in this class require specific SOPs. Chemical-specific SDSs and all relevant SOPs must be reviewed prior to use of any chemical in this class.

A complete list of the water reactive chemicals from the Settlement Agreement can be found in Appendix

Examples of Pyrophorics

  • Metal alkyls and aryl compounds: diethyl zinc, dimethyl cadmium, trimethyl aluminum
  • Alkyl lithium or organolithium compounds: tert-butyllithium, sec-butyllithium, n-butyllithium,methyl lithium. T-butyllithium is most pyrophoric
  • Grignard Reagents: RMgX (R=alkyl, X=halogen), methylmagnesium bromide
  • Metal carbonyls: nickel tetracarbonyl
  • Metal powders (finely divided): Cobalt, iron, zinc, zirconium, barium strontium, calcium, hafnium
  • Metal hydrides: Sodium hydride, lithium aluminum hydride; Nonmetal hydrides: Diethylarsine, diethylphosphine
  • Non-metal alkyls: R3B, R3P, R3As; tetramethyl silane, tributyl phosphine
  • White and red phosphorus
  • Group I (Alkali) metals: Lithium, potassium, sodium, sodium-potassium alloy (NaK), rubidium, cesium
  • Pyrophoric gases (e.g. silane, dichlorosilane, phosphine) are covered in the UCB toxic gas program (

For a more complete listing of pyrophoric materials and examples, as described in the Settlement Case, please go to Appendix A.

Physical & Chemical Properties/Definition of Chemical Group

CAS#: List here

Class: List here NOTE: this may vary from the Settlement Category

Molecular Formula: List here

Form (physical state): List here

Color: List here

Boiling point: List here °C (List here °F) - lit.

Potential Hazards/Toxicity

Pyrophorics react to air spontaneously. Also, most pyrophorics react violently with water. Therefore, water should not be allowed to contact pyrophoric materials. The reaction rate of pyrophorics (and therefore heat and gas generation) depends on the material's surface area. Therefore smaller particle size or liquids increases the hazards associated with these materials.Because of the potential reactivity,pyrophorics must be handled under an inert atmosphere and in such a way that rigorously excludes air/moisture. Many come dissolved or immersed in a flammable solvent that may pose additional hazards.Most of these materials are toxic and may cause damage to the liver, kidneys, and central nervous system.

Additional hazards to specific pyrophoric chemicals must be identified by a review of the appropriate Safety Data Sheets prior to commencing lab work.

Engineering Controls

NOTE: Lab-specific information on engineering controls may be included in the Protocol/Procedure section.

The following is a general plan for all pyrophoric materials:

  1. Work under an inert atmosphere (e.g., argon, nitrogen) in a glove box, vacuum manifold or anyenclosed inert environmentinside a fume hood.
  2. Keep the material under inert atmosphere (e.g., nitrogen, argon) when not in use.
  3. Only when absolutely necessary to transfer larger quantities of pyrophorics, use an appropriately-designed, engineered system that is tested and properly used.

Personal Protective Equipment (PPE)

NOTE:Lab-specific information on PPE selection may be included in the Protocol/Procedure section.

Respiratory Protection

NOTE: Lab personnel intending to use/wear a respirator mask must be trained and fit-tested by EH&S. This is a regulatory requirement.

Respirators should be used only under any of the following circumstances:

  • As a last line of defense (i.e., after engineering and administrative controls have been exhausted).
  • When Permissible Exposure Limit (PEL) has exceeded or when there is a possibility that PEL will be exceeded.
  • Regulations require the use of a respirator.
  • An employer requires the use of a respirator.
  • There is potential for harmful exposure due to an atmospheric contaminant (in the absence of PEL)
  • As PPE in the event of a chemical spill clean-up process

Hand Protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

NOTE:Lab-specific and chemical-specific information on glove selection may be included in the Protocol/Procedure section. Refer to glove selection from the link below:

For glove selection, go to:

NOTE:Lab-specific and chemical-specific information on glove selection may be included in the Protocol/Procedure section. Nomex-and-leather flight gloves over chemically resistant gloves are recommended in the UC Berkeley Office of Environmental Health and Safety document“Safe Use of Pyrophoric and Water Reactive Reagents”.See also, EHS&S document entitled “Glove Selection and Usage.”

Eye Protection

At minimum, use chemical safety goggles or safety eyewear when working with pyrophorics in a glove box or fume hood. Use face shield (8-inch minimum) with chemical safety goggles or protective eyewear when not protected by a fume hood sash or glove box. Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU) or ANSI Z87.1.

Skin and Body Protection

Long pants, closed-toed and closed-heeled shoes, cotton or wool-based clothing/attire, and flame resistant lab coat must be worn for protecting against chemical hazards.Synthetic clothing is strongly discouraged.

NOTE: A Nomex lab coat is recommended in the UC Berkeley Office of Environmental Health and Safety document “Safe Use of Pyrophoric and Water Reactive Reagents”.

Hygiene Measures

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

First Aid Procedures

Notify supervisor and EH&S immediately.Follow up with a call to 510-642-9090 to report the incident.

If Inhaled

Move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In Case of Skin Contact

Take off contaminated clothing immediately. Wash off with soap and plenty of water for 15 minutes. Take victim immediately to hospital. Consult a physician.

In Case of Eye Contact

Rinse thoroughly with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid immediately.

If Swallowed

Do not induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

Special Handling and Storage Requirements

NOTE:Lab-specific information on handling and storagemay be included inthe Protocol/Procedure section.

Working Alone

Certain extremely hazardous operations should not be performed if the PI or Lab Safety Contact(s) are not present. Never work alone with extremely hazardous materials/operations. See the Protocol/Procedure section below for specific prohibitions (if any) on working alone.

NOTE: TheUC Berkeley Office of Environmental Health and Safety document “Safe Use of Pyrophoric and Water Reactive Reagents” specifies not to work alone or during off hours, when there are few people around to help.

Precautions For Safe Handling

  • Design a quenching scheme for residual materials prior to using pyrophoric materials.
  • Never use water to quench the material itself or a reaction where a pyrophoric reagent is used.
  • Begin quenching with a low reactivity quenching agent and slowly add more reactive quenching agents. For example, first quench residual sodium metal with isopropanol and then add ethanol to the mixture.
  • Design your experiment to use the least amount of material possible to achieve the desired result.
  • It is better to do multiple transfers of small volumes than attempt to handle larger quantities. Before transferring, make sure that the material is at room temperature.
  • Avoid formation of dusts and aerosols
  • Provide appropriate exhaust ventilation at places where airborne hazardous materialsmay be generated.
  • Keep away from sources of ignition and combustible materials such as open flames, non-explosion-proof hot plates, paper towels and KimiwipesTM.
  • Take measures to prevent the build-up of electrostatic charge.
  • Eliminate or substitute a less hazardous material when possible.
  • Verify your experimental set-up and procedure prior to use.
  • Inform colleagues that this material will be used and where. Label the work area with a sign saying "Pyrophorics In-Use Area".
  • Ensure that the area is properly equipped with a properly functioning eye wash/safety shower within ten seconds of travel.
  • Never use water to extinguish fires caused by water reactive materials. Be sure to use a an appropriate fire extinguisher for the materials being used.

NOTE:See a more details on safe handling in the UC Berkeley Office of Environmental Health and Safety documents “Safe Use of Pyrophoric and Water Reactive Reagents” and “Quenching of Pyrophoric Substances”.

Conditions For Safe Storage

  • Whenever possible, store inside a glove box. Otherwise, store inside a container with an inert atmosphere.
  • Keep container tightly closed in a dry and well-ventilated place.
  • Minimize dust generation and accumulation.
  • Hazard communication label on the container must read ‘Water Reactive’. W
  • Never allow product to get in contact with water or water based compounds during storage.
  • Do not leave the container on the bench top - even momentarily.
  • Do not leave the container near a lab sink, emergency eyewash or safety shower.
  • Do not store in humid air/moisture.
  • Store and handle under inert gas (Noble gases such as Nitrogen, Argon etc.)
  • Keep in a dry place (such as a desiccator or a dry box or glove box).
  • Use/purchase only amount that is needed in a reasonable amount of time. Use small quantities whenever possible.
  • Store in a separate secondary container and label the material clearly.
  • Follow any substance-specific storage guidance provided in Safety Data Sheet documentation.
  • Store in a cool, dry location, separated from acids.
  • Monitor your inventory closely to assure that you have tight control over your material.
  • Wash hands and arms with soap and water after handling.
  • Minimize dust generation and accumulation.
  • At the end of each project, thoroughly inspect the area for residual reactive material.
  • NOTE: See a more details on safe handling in the UC Berkeley Office of Environmental Health and Safety documents “Toxic Gas Program Document”

Spill and Accident Procedure

Fire-Fighting & Extinguishing Media

Prior to use, review the Safety Data Sheet for the proper fire extinguisher to use with the given material Acceptable fire extinguishing media include Metal X, soda ash (lime) or dry sand to respond to small fires, and an ABC extinguisher for large fires. The extinguishing media should be located near where the pyrophoric work is occurring. DO NOT use waterto attempt to extinguish a pyrophoric/reactive material fire as it can enhance the combustion of some of these materials, e.g. metal compounds, and do not use water or CO2 extinguishers on an organolithium fire. A small beaker of Metal X/LithX, dry sand or soda ash (lime) in the work area is useful to extinguish any small fire that occurs at the syringe tip and to receive any last drops of reagent from the syringe.. In general, an ABC dry powder extinguisher will put out the fire, but the pyrophoric reagent may reignite.

Special Protective Equipment For Fire-Fighters

Wear Self-Contained Breathing Apparatus (SCBA) for fire-fighting if necessary.

Personal Precautions

  • Avoid dust formation.
  • Ensure adequate ventilation.
  • Remove all sources of ignition and combustion.
  • Evacuate personnel to safe areas.

Environmental Precautions

Do not let product enter drains.

Methods and materials for containment and cleaning up

  • Pick-up and dispose of as hazardous waste without creating dust.
  • Do not flush with water or bring in contact with moisture.
  • Keep in suitable, tightly closed containers for disposal.

Chemical Spill Dial 911

Spill – Assess the extent of danger. Help contaminated or injured persons. Evacuate the spill area. Avoid breathing vapors. If possible, confine the spill to a small area using a spill kit or absorbent material. Keep others from entering contaminated area (e.g., use caution tape, barriers, etc.).

Small (<1 L) – If you have training, you may assist in the clean-up effort. Use appropriate personal protective equipment and clean-up material for chemical spilled. Double bag spill waste in clear plastic bags, label and take to the next chemical waste pick-up.

Large (>1 L) – Dial 911and 510-642-9090 for assistance.

Chemical Spill on Body or Clothes – Remove clothing and rinse body thoroughly in emergency shower for at least 15 minutes. Seek medical attention. Notify supervisor and EH&S immediately.Follow up with a call to 510-642-9090 to report the incident.

Chemical Splash Into Eyes – Immediately rinse eyeball and inner surface of eyelid with water from the emergency eyewash station for 15 minutes by forcibly holding the eye open. Seek medical attention. Notify supervisor and EH&S immediately.Follow up with a call to 510-642-9090 to report the incident.

Medical Emergency Dial 911

Life Threatening Emergency, After Hours, Weekends And Holidays – Dial 911or go to the nearest emergency room. Note: All serious injuries must be reported to EH&S within 8 hours. Follow up with a call to 510-642-9090 to report the incident.

Non-Life Threatening Emergency – Go to the Occupational Health Facility (Tang Health Center). After hours go to the nearest emergency room. Note: All serious injuries must be reported to EH&S within 8 hours. Follow up with a call to 510-642-9090 to report the incident.

Needle stick/punctureexposure (as applicable to chemical handling procedure) – Wash the affected area with antiseptic soap and warm water for 15 minutes. For mucous membrane exposure, flush the affected area for 15 minutes using an eyewash station. Go to the Occupational Health Facility (Tang Health Center).After hours go to the nearest emergency room. Note: All needle stick/puncture exposures must be reported to EH&S within 8 hours. Follow up with a call to 510-642-9090 to report the incident.

Decontamination/Waste Disposal Procedure

Wearing proper PPE, decontaminate equipment and bench tops using procedures done in cooperation with site EH&S. Dispose of anypyrophoric and water reactivewaste materials and any other disposables contaminated with these materials as hazardous waste.

NOTE:Lab-specific information on decontamination/waste disposalmay be included inthe Protocol/Procedure section.See theEH&SFactSheet,“HazardousWaste Management”forgeneralinstructionsonprocedures fordisposingofhazardouswaste.

Label Waste

Labelallcontainers withthelabelprovidedat See theEH&SFactSheet,“HazardousWaste Management”forgeneralinstructionsonprocedures fordisposingofhazardouswaste.

Store Waste

  • Store hazardous waste using procedures done in cooperation with site EHS&S.

Dispose of Waste

  • Dispose of regularly generated chemical waste within 6 months
  • Call EH&S for questions
  • Empty Containers
  • Dispose as hazardous waste if it once held extremely hazardous waste (irrespective of the container size)
  • Consult waste pick-up schedule

Prepare for transport to pick-up location

  • Check on-line waste tag
  • Write date of pick-up on the waste tag
  • Use secondary containment
  • Dispose of regularly generated chemical waste within 6 months
  • Call EH&S for questions

Safety Data Sheet (SDS) Location

SDS can be accessed online at

[Pyrophorics]1Date: 01/02/2013

SOP Template developed by The UC Center for Laboratory Safety

[Pyrophorics]1Date: 01/02/2013

SOP Template developed by The UC Center for Laboratory Safety

Documentation of Training(signature of all users is required)

  • Prior to conducting any work with strong reducing agents, designated personnel must provide training to his/her laboratory personnel specific to the hazards involved in working with the substance(s), work area decontamination, and emergency procedures.
  • The Principal Investigator must provide his/her laboratory personnel with a copy of this SOP and a copy of the SDS provided by the manufacturer.

I have read and understand the content of this SOP:

Name / Signature / Initials / Identification / Date
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /
Click here to enter text. / Click here to enter a date. /

[Pyrophorics]1Date: 12/12/2012

SOP Template developed by The UC Center for Laboratory Safety

Appendix A (from Case Settlement Appendix 2)

Pyrophoric Chemicals

Chemical Family / Example
1.1.Aluminum alkyls:
R3Al, R2AlCl, RAlCl2 / Et3Al, Et2AlCl, EtAlCl2, Me3Al, Diethylethoxyaluminium
1.2. Grignard Reagents:
RMgX (R=alkyl, aryl, vinyl X=halogen)
1.3. Lithium Reagents:
RLi (R = alkyls, aryls, vinyls) / Butyllithium, Isobutyllithium, sec-Butyllithium, tert-Butyllithium, Ethyllithium, Isopropyllithium, Methyllithium, (Trimethylsilyl)methyllithium, Phenyllithium, 2-Thienyllithium, Vinyllithium, Lithium acetylide ethylenediamine complex, Lithium (trimethylsilyl)acetylide, Lithium phenylacetylide
1.4. Zinc Alkyl Reagents: RZnX, R2Zn / Et2Zn
1.5. Metal carbonyls / Lithium carbonyl, Nickel tetracarbonyl, Dicobalt octacarbonyl
1.6. Metal powders (finely divided) / Bismuth, Calcium, Cobalt, Hafnium, Iron, Magnesium, Titanium, Uranium, Zinc, Zirconium
1.7. Low Valent Metals / Titanium dichloride
1.8. Metal hydrides / Potassium Hydride, Sodium hydride, Lithium Aluminum Hydride, Diethylaluminium hydride, Diisobutylaluminum hydride
1.9. Nonmetal hydrides / Arsine, Boranes, Diethylarsine, diethylphosphine, Germane, Phosphine, phenylphosphine, Silane, Methanetellurol (CH3TeH)
1.10. Non-metal alkyls: R3B, R3P, R3As / Tributylphosphine, Dichloro(methyl)silane
1.11. Used hydrogenation catalysts / Raney nickel, Palladium, Platinum
1.12. Activated Copper fuel cell catalysts / Cu/ZnO/Al2O3
1.13. Finely Divided Sulfides / Iron Sulfides (FeS, FeS2, Fe3S4), and Potassium Sulfide (K2S)
1.14. Elements / Phosphorus, Cesium, Lithium, Potassium, Sodium, Sodium Potassium Alloy (NaK), Aluminum Phosphide (AlP)

[Pyrophorics]1Date: 12/12/2012