Y6 Maths Masterclass 2008
Session 1 – Regular Polygons Incomputer suite
- Make Name badges as pupils arrive.
- Talk through Matchmania puzzles on board.
- Demonstrate drawing regular polygons with turtle logo applet. What are the exterior angles? Why?
- Fill in table showing exterior angles. Work out interior angles.
- Then show Tessellating Polygons Investigation. Talk about regular tessellations. Why do some polygons tessellate?
- Then they use GSP to investigate semi-regular tessellations and print out their results.
- Finish with folding a regular pentagon/hexagon if time.
- Show cake cutting puzzle clip for challenge.
Session 2 – The Fibonacci Sequence in maths room
- Broken calculator puzzle as class arrive.
- Talk about cake cutting puzzle. Any answers? Show video.
- Go to stairs with whiteboard for recording. Complete stair climbing investigation. Encourage systematic approach.
- Can anyone see a pattern in the numbers?
- Now onto rabbits. Read from the Number Devil and show slides.
- Show Fibonacci spiral video and then draw on squared paper using compasses.
- Give brick wall problem as challenge.
Session 3 – Pascal’s Trianglein maths room
- Talk through last week’s challenge. Link to Fibonacci sequence.
- Find the words starter – Sand, Kites and Ghosts as pupils arrive. Encourage them to be systematic.
- Then show binostat. Why do more balls end up in the middle?
- They fill in The Binostat sheet. Use colours and make sure they don’t miss any. This should generate Pascal’s triangle.
- Start writing the rows on blank triangle sheets. Can anyone see any patterns? They fill in rest of triangle. Check no mistakes.
- Give out answers if necessary then look for patterns.
- Now multiple colouring.
- Give 12 days of Christmas problem as challenge.
Session 4 – The Platonic Solids in maths room
- Look at last week’s challenge. Show location on Pascal’s triangle.
- Explain what makes a Platonic Solid. They try to make platonic solids using Polydron shapes.
- Show animated slides of 5 possible platonic solids.
- Who knows about vertices, faces and edges? Count them up and fill in table.
- Can we spot a pattern? Arrive at Euler’s theorem.
- Extend onto making Archimedean Solids
- Could also talk about Space Filling
- Leave them with the Platonic Face Painting Solid.
- Give them Maths Challenge Papers to do at home and email them with a list of sites relevant to the 4 lessons so far.
Session 5 – Quadrilaterals in computer suite
- Play Back to Back to help develop terminology and accurate descriptions.
- Investigate properties of quadrilaterals using GSP file. Fill in table.
- Play Guess the Quadrilateral. 2 yes/no questions and then guess. What makes a good question?
- Demonstrate the last biscuit game and give them this as a challenge.
Session 6 –Codes in maths room
- Play last biscuit against each other. Then against computer. Who can explain their strategy.
- Introduce Substitution Ciphers and give them simple one to solve.
- Talk about different shifts. Give them Vigenere Square to solve the next one.
- Introduce using letter frequency to solve a harder Caesar Cipher.
- Give them order of frequency and harder example of passage to solve in groups. Prizes for winners. Hints available to help if necessary.
- Could go onto another type of code – Bar Codes.
- Some puzzles to take away as challenge.
Session 7 – Cubes and Cuboids in maths room
- Talk through puzzles from last time.
- In groups finding all the different pentominoes and then hexominoes.
- Which of these will fold to make a cube?
- Now Fly on cuboid video problem.
- They work it out. Explain how the net can help with this answer.
- Finish with making a folding cube net from card.
Session 8 – Topology and Paradoxes in compute suite
- Square dissection puzzles to start
- To start with, look at pencil caught in buttonhole problem and hands tied together problem.
- Pass disc through hole that looks smaller. Removing waistcoat without jacket.
- Talk about topology
- Introduce the Mobius strip. Everyone makes one.
- Ask class to colour in just one side of it. What happens? Talk about conveyer belt patent.
- Now we will cut it lengthways. Prediction as to what will happen.
- Now make another and cut one third of the way across this time.
- 4 colour map problem.
- Leave them with the disappearing square dissection online and which they can make themselves.
- Email again with sites relevant to last 4 sessions and invite to JMC.