RELIABLE CLASSES / S.Y.J.C./ MATHEMATICS AND STATISTICS-I

CHAPTER - 6 INTEGRATION

Marks allotted : 08

Definition of integral of a function:

If f (x) and g (x) are two functions such that then f (x) is called an integral or an antiderivative or a primitive of g (x) with respect to x. It is denoted by  g (x) dx = f (x) and read as integral of g (x) w.r.t.x. is f (x). Here, we say that g (x) is an integrand.

The process of finding the primitive or integral of a function is called integration. Thus, integration is the inverse process of a differentiation.

Functions / Integrations / Reasons
1. 0 / C /
2. 1 / /
3. xn (n ≠ -1) / /
4. / log (x) /
5. / /
6. / /
7. a(a > 0) / /
8. sinx / - cosx /
9. cos x / Sinx /
10. Sec2 x / tan x /
11. Sec x tan x / Sec x /
12. Cosec2 x / - Cotx /
13. Cosec Cotx / - Cosec x /
14. / tan-1 (x) /
OR / OR
- cot-1 (x) /
15. / Sin-1 (x) /
OR / OR
- Cos-1 (x) /
16. / Sec-1 (x) /
OR / OR
Cosec-1 (x) / =

PART (A)

Type 1. Using Direct Method.

Q1. (1 + 2x + 3x2 + 4x3)dxQ2.

Q3.Q4.(5 – 3x) (2 + x2) dx

Q5.If f  (x) = 6x2 + 4x + 5 and f (0) = 5, find f (x).

Q6.If f (x) = 8x3 + 3x2 – 10x – k and f (0) = -3 and f (-1) = 0, find f (x).

Q7.If f (x) = 4x3 – 3x2 + 2x + k and f (0) = 1; f (1) = 4, find f (x)

Q8.If f  (x) = k (cos x – sin x), f(0) = 3 and = 15, find f (x).

Type 2: Composite Function

1. / / (ax + b)n (n  -1) /
2. / Log lxl / /
3. / 2 / /
4. ex / ex / eax+b /
5. ax (a > 0) / / amx+n (a > 0) /
6. Sinx / -Cosx / Sin (ax +x) /
7. Cosx / Sinx / Cos (ax + b) /
8. Sec2 x / tanx / Sec2 (ax + b) /
9. Sec x tan x / Secx / Sec (ax + b) tab (ax+ b) / sec (ax+ b)
10. Cosec2 x / -Cotx / Cosec 2(ax +b) / cot (ax+ b)
11. Cosec Cotx / -CoSecx / Cosec (ax + b) /
12. / tan-1 x / /
13. / Sin-1 (x) / /
14. / Sec-1 (x) / /

Integrate the following functions w.r.t.x where f(x) is given by

Q9.(3x2 – 5)2dxQ10.

Q11.dxQ12. a3x-1dx

Q13. cos (3-2x) dxQ14. cosec (4-3x) cot (4-3x) dx

Q15.

Type 3: Using Where n ≠ -1 put t = f(x) and solve

Q16.x2 (2x3 – 1)3/2dxQ17.dx

Q18. cos7 x sin x dxQ19. tan5x sec2 x dx

Q20. dxQ21. dxQ22.dx

Type 4 : Using Where n = -1 Put t = f(x) and solve

Find the following integrals

Q23.Q24.

Q25.Q26.

Q27.Q28.

Q29.Q30.

Q31.Q32.

Q33.Q34.

Q35.Q36

Type 5: Using Put t = f(x) & Solve

Q37.Q38.39.

Type 6:On  f [g(x)] g(x) dxput t = g(x) & solve

Q40.Q41.Q42.

Q43.Q44.7xlogx (1+ log x) dxQ45.

Q46.

Type 7:  p (x) (ax + b)n dx

Where p (x) is polynomial function in x and n is a rational number

Put t = ax + b

Find the value of x in terms of t &

i.e.t = ax + b,t – b = ax,

Q47.dxQ48.dx

Q49.(5 – 3x) (2-3x)-1/2dxQ50.dx

Type 8 On Trigonometric Function

1. sinx dx = - Cos x + c

2. cos x dx = Sin x + c

3. sec2xdx = tan x + c

4. tan2 x dx = tanx – x + c

5. Secx tanx dx = sec x + c

6. Cosec2xdx = -Cotx + c

7. Cot2xdx = - Cotx – x + c

8. Cosec x cotx dx = - Cosec x + c

9. Cotx dx = log

10. tanx dx = log

11. sec x dx = log OR log + c

12. Cosecxdx = log OR log

Integrate the following w.r.t.x

Q51.(i)(ii)(iii)sec2 x – sec x tan x dx

Q52.(i)(ii)

Q53.(i)sin 2x cos 8x(ii)

Q54.(i)  Sin2xdx(ii)Cos2xdx

Q55.(i) Sin4xdx(ii)Cos4xdx

Q56.(i)Sin3xdx(ii)Cos3xdx

Q57.Q58.where A is constant.

Q59.Q60.

Type 9: On Compound Angle.

Write the angle of Numerator same as denominator without changing the original angle ofnumerator, Apply Compound angle formula in numerator Simplify and integrate:

Q61.Q62.

Q63.Q64.

Note.

1.If the terms in the denominator are similar i.e. sin (x – a). sin (x – b) or cos (x – a) cos (x – b), we introduce sin (b-a) which gives dissimilar terms.

2.If the terms in the denominator are dissimilar, i.e. sin (x – a) cos (x – b) or cos (x –a) sin (x – b), we introduce cos (b – a) which give similar terms.

Q65.

Q66. dx

Q67.dx

Part B

Type 1: On Standard integration formula

Integrals of the type

In order to find this type of integrals we may use the following steps.

Step 1: Make the coefficient of x2 unity, if it is not, as

Step 2: Add and subtract the square of the half of coefficient of x i.e. to complete the square

=

Step 3: Use the suitable formula for evaluation.

1.

2.

3.

Q68. Integrate the following.

(i)(ii)

(iii)(iv)

(v)

Q69.(i)(ii)

(iii)(iv)

(v)(vi)

(vii)(viii)

(ix)(x)

Q70.(i)(ii)

(iii)(iv)

(v)(vi)

(vii)

Type 2

4.

5.

6.

Q71.(i)(ii)

(iii)(iv)

Q72.(i)(ii)

(iii)(iv)

(v)(vi)

(vii)(viii)

(ix)(x)

Q73.

(i)(ii)

(iii)(iv)

(v)(vi)

(vii)(viii)

(ix)

Type 3:

7.

8.

9.

Q74.Find the following integrals

(i)(ii)

(iii)(iv)

(v)(vi)

(vii)(viii)

(ix)(x)

Type 4:

dx

Divide each term by Cos2x if in denominator sec2x = 1 + tan2x put t = tan x and solve

Q75.Q76.

Q77.(i) (ii)

Type 5:

Put t = tanif the given angle in the question is x and put t = tan x if the angle in the question is 2x and solve.

Put t = tan

Sin x =

Integrate the following w.r.t.x

Q78.Q79.

Q80.Q81.

Q82.Q83.

Q84.Q85.

Type 6:

On Rational Algebraic Functions.

(A)Degree of Numerator < Degree of Denominator

Write the derivative of denominator in numerator without Changing the original value of numerator, simplify and apply.

When than first part will be always

Q86Find the following integrals

(i).(ii).(iii).

When than first part will always

Q87.(i)(ii)

(iii)(iv)

(v)

(B)Degree of Numerator = Degree of Denominator

Write numerator same as denominator without changing the original value of numerator, simplify and integrate.

When then first part will be always

Q88.Integrate the following w.r.t.x

(i)(ii)(iii)

When then first part will be always

Q89.(i)(ii)(iii)

(c)Degree of Numerator < Degree of Denominator

Apply algebraic division and use the property

Dividend = Division x Quotient + Remainder

Q90.(i)(ii)(iii)

PART –C

Type 1: Integration by Partial Fractions

The following table indicates how to choose the partial fractions corresponding to the given rational function in different forms.

Sr. No. / Form of the rational function / Form of the partial fraction
1. / /
2. / are distinct. /
3. / /
4. / /
5. / /
6. /
/

Q91.Find the following integrals

(i)(ii)

(iii)(iv)

(v)(vi)

(vii)

Q92.(i)(ii)(iii)

Q93.(i)(ii)

Q94.Q95.

Type 2: Using

Q96.Q97.

Q98.Q99.

Q100.Q101.

Q102.Q103.

Q104.Q105.

Q106.Q107.Q108. [ sin (log x) + (cos (log x)]dx

Type 3 : Integration by parts

First decide u & v by LIATE rule than integration

L =Logarithmic function Eg. logx

I =Inverse Trigonometric Function E.g. Sin-1 (x)

A =Algebraic Function Eg. x, x2.

T =Trigonometric function Eg. Sinx, Cosx

E =Exponential Function Eg. ex, ax

Q109Find the following integrals”

(i)(ii)

Q110.(i)(ii)

Q111.(i)(ii)

Q112.Q113.Q114.

Q115.Q116.Q117.

Q118.Q119.Q120

1