Supplementary data

Protein kinase C (PKC) isozymes and cancer

Jeong-Hun Kang

TABLE S1: Target protein substrates for PKCs and their phosphorylation sites.

PKC isozymes a / Target protein substrates / Phosphorylation sites / Supplementary references
PKCs / Adducin (α-adducin)
Adducin (β-adducin) / Ser-716 and Ser-726
Ser-703 and Ser-713 / [1]
[1]
PKCs / α-helical head domain of desmin / Ser-12, Ser-29, Ser-38, and Ser-56 / [2]
PKCs / α2A-adrenergic receptor / Ser-232 / [3]
PKCs / α3A integrin / Ser-1042 / [4]
PKCs / α4 subunit of α4β2 neuronal nicotinic receptors / Thr-532/Ser-550 (in vitro/in vivo) / [5, 6]
PKCs / α6A integrin subunit / Ser-1041 / [7, 8]
PKCα / α6-tubulin / Ser-165 / [9]
PKCs / Alzheimer β/A4 amyloid precursor protein / Ser-655 / [10, 11]
PKCs / Angiotensin II receptor (AT1A) / Ser-331, Ser-338, and Ser-348 / [12]
PKCs / Annexin I (also known as calpactin II, p35, or lipocortine I) / Thr-24, Ser-27, Ser-28, and Thr-41 (major phosphorylation site, Ser-27 and Thr-41) / [13, 14]
PKCα, βΙ, and βII / Annexin II (also known as calpactin I, p36, or lipocortine II) / Ser-25 / [15, 16]
cPKCs / Annexin IV (also known as endonexin I or p33/40) / Thr-6 / [17]
cPKCs / Avian retrovirus matrix protein / Ser-68 and Ser-106 / [18]
PKCθ and ε / Bad (Bcl-associated death protein) / Ser-112 / [19]
PKCι / Ser-112, Ser-136, and Ser-155 / [20]
PKCs / basic fibroblast growth factor (also known as bFGF, FGF2, or FGF-β) / Ser-64 / [21]
PKCα / Bcl-2 / Ser-70 / [22]
PKCδ / Bcl-2 associated athanogene 3 (BAG3) / Ser-187 / [23]
PKCα / β-catenin / Ser-33, Ser-37, and Ser-45 / [24]
PKCs / β2-adrenergic receptor / Ser-261, Ser-262, Ser-344, and Ser-345 / [25, 26]
PKCs / β4 integrin subunit / Ser-1360 / [27]
PKCα / β4 integrin subunit / Ser-1360 and Ser-1364 / [28]
PKCs / BK channel (large Ca2+-activated potassium channel) / Ser-695 and Ser-1151 / [29]
PKCε / Borna disease virus P-protein / Ser-26 and Ser-28 / [30]
PKCs / Bradykinin B2 receptor / Ser-346 / [31]
PKCs / Canonical transient receptor potential channel subtype 3 (TRPC3)
TRPC5
TRPC6A
TRPC6B / Ser-712
Thr-972
Ser-748
Ser-714 / [32]
[33]
[34]
[34]
PKCδ / TRPC6 / Ser-448 / [35]
PKCs / Cardiac myosin-binding protein C (cMyBP-c) (also known as MYBPC3) / Ser-273 and Ser-302/Ser-265 and Ser-300 (human/chicken) / [36, 37]
PKCs / Ca2+/calmodulin-dependent protein kinases II (CaM kinases II) / Thr-286 / [38]
PKCs / CD33 (known as Siglec-3) / Ser-307 / [39]
PKCs / cGMP-dependent protein kinase (PKG or cGK) 1α / Thr-58 / [40]
PKCs / Chaperone or modulatory protein 14-3-3 / Ser-58, Ser-59, and Ser-60 for 14-3-3ζ, 14-3-3η, and 14-3-3β, respectively / [41]
cPKCs / Choline acetyltransferase / Thr-255, Ser-346, Ser-347, Ser-440, and Ser-476
(nPKCs and aPKCs phosphorylate Ser-440 and Ser-476) / [42]
PKCα / c-kit-encoded tyrosine kinase receptor for stem cell factor (Kit/SCFR) / Ser-741 and Ser-746 / [43]
PKCζ / c-Myc / Ser-373 / [44]
PKCε / Connexin 43 (Cx43) (also known as gap junction α-1 protein) / Ser-262
Ser-368 / [45]
[46]
PKCs / CPI-17 (protein kinase C-dependent inhibitory of 17 kDa) / Thr-38 / [47]
PKCs / CTP synthetase 1 / Ser-462 and Thr-455 / [48]
PKCγ
cPKCs / Diacylglycerol kinase (DGK)γ accessory domain
DGKδ1 PH domain / Ser-776 and Ser-779
Ser-22 and Ser-26 / [49]
[50]
PKCα / Dynamin I / Ser-795 / [51]
PKCs / Dystrophin / Ser-136 and Ser-147 / [52]
PKCα / ELAV-like protein HuR (HuA) / Ser-158 and Ser-221 / [53]
PKCs / Endothelial nitric oxide synthase (eNOS) / Thr-495/497 (human/bovine) / [54, 55]
PKCs / Epidermal growth factor receptor (EGFR) / Thr-654 / [56, 57]
PKCι / Epithelial cell transformaing sequence 2 (Ect2) / Thr-328 / [58]
PKCδ / ErbB3-binding protein 1 (EBP1) / Ser-360 / [59]
PKCδ
PKCβΙ / Eukaryotic elongation factor 1α (eEF-1α) / Thr-431
Ser-53 / [60]
[61]
PKCs / Eukaryotic initiation factor-2β (eIF-2β)
eIF-2γ
eIF-4E / Ser-13
Thr-66
Ser-209 and Thr-210 / [62]
[63]
[64]
PKCα / Farnesoid X receptor (FXR) (also known as NR1H4) / Ser-135 and Ser-154 / [65]
PKCs / Fms-interacting protein (FMIP) / Ser-5 and Ser-6 / [66]
PKCs / γ-aminobutyric acid type A (GABAA) receptor β1 subunit
GABAA receptor β2 subunit
GABAA receptor γ2S subunit
GABAA receptor γ2L subunit / Ser-409
Ser-410
Ser-327
Ser-343 / [67]
[68]
[67, 68]
[67]
PKCs / GluA1 AMPA receptor subunit / Ser-831 / [69, 70]
PKCα and γ / Glutathione S-transferase P1 (GSTP1) / Ser-42 and Ser-148 in the absence of glutathione / [71]
PKCα, βI, βII, γ, δ, ε, η, and ζ / Ser-42 and Ser-148 in the presence of glutathione
PKCα, βII, γ, δ, and η
(PKCβII and δ are very weak) / Glycogen synthase kinase (GSK)-3α / Ser-21 / [72]
PKCα, βI, and γ / GSK-3β / Ser-9 / [73]
PKCα, βI, and η / Ser-9 / [72]
PKCs / G protein α subunit Gzα / Ser-25 and Ser-27 / [74]
PKCα, δ, and ζ / G protein-coupled receptor kinase-2 (GRK2) [also known as β-adrenergic receptor kinase (βARK)] / Ser-29 / [75, 76]
PKCs / GRK5 / Ser-566 and Ser-572 / [77]
PKCα / GTPase activating protein (GAP) p190A / Ser-1221 and Thr-1226 / [78]
PKCs / GTP-binding protein γ12 / Ser-1 / [79]
PKCδ / Heat-shock protein-25/27 / Ser-15 and Ser-86 / [80]
PKCs / Hepatitis B virus surface M protein (C-termimally truncated middle size protein) / Ser-28 / [81]
PKCs / Hepatitis C virus core protein / Ser-116 / [82]
PKCs / Hepatocyte growth factor receptor kinase / Ser-985 / [83]
PKCζ / Heterogeneous ribonuscleoprotein A1 / Ser-199 + three unknown sites / [84]
cPKCs and PKCδ / High-mobility-group protein-1 / Ser-44 and Ser-64 / [85]
PKCs / Histamin H1 receptor (H1R) / Ser-398 / [86]
PKCs / Histone H1 / Ser-103 / [87]
PKCβΙ / Histone H3 / Thr-6 / [88]
PKCε and β / Ser-10 / [89]
PKCs / HIV-1 gag protein / Ser-111 / [90]
PKCδ / HuR / Ser-318 / [91]
PKCε / IKKβ / Ser-177 / [92]
PKCs / Insulin receptor / Thr-1336 / [93]
PKCζ / Insulin-responsive aminopeptidase (IRAP) / Ser-80 and Ser-91 / [94]
PKCδ
PKCθ
PKCβII
PKCδ
PKCζ / Insulin receptor substrate-1 (IRS-1) (human)
IRS-1 (human)
IRS-1 (mouse)
IRS-1 (rat)
IRS-1 (rat) / Ser-24, Ser-307, Ser-323, and Ser-574
Ser-1101
Ser-336
Ser 357
Ser-318, Ser-498, Ser-570, and Ser-612 (major phosphorylation site, Ser-318) / [95, 96]
[97]
[98]
[99]
[100, 101]
PKCι / Interleukin-1 receptor-associated kinase (IRAK) / Thr-66 / [102]
PKCs / Interleukin-2 (IL-2) / Ser-7 / [103]
PKCs / Iron-responsive element-binding protein / Ser-138 and Ser-711 / [104]
cPKCs / Junctional adhesion molecule (JAM) / Ser-284 / [105]
PKCε / Keratin 8 / Ser-8 and Ser-23 / [106]
PKCε / Keratin 18 / Ser-52 / [107]
PKCδ and ε / Kv3.1b potassium channel / Ser-503 / [108]
PKCα, βΙ, βII, γ, δ, and θ
All PKCs except PKCη / L-type Ca2+ channel (also known as voltage-dependent Ca2+ channel or Cav1.2 α1c) / Ser-1674
Ser-1928 / [109]
[109, 110]
PKCs / L-myc / Ser 38 and Ser 42 / [111]
PKCs / Lens fiber major intrinsic protein / Ser-245 / [112]
PKCs / Microtubule-associated protein 2 (MAP2)
MAP4 / Ser-1703, Ser-1711, and Ser-1728
Ser-815 / [113]
[114]
cPKCs / Myelin basic protein (MBP) / Ser-110 and Ser-115 / [115]
PKCs / Ser-8, Ser-11, Ser-46, Ser-55, Ser-110, Ser-132, Ser-151, and Ser-161 / [116]
PKC βII / Myristoylated alanin-rich kinase substrate (MARCKS) (also known as p80 and p87) / Ser-152 and Ser-156 (murine) / [117]
PKCs / Ser-45, Ser-80, Ser-99, and Ser-116 (bovine)
Ser-152, Ser156, and Ser-163 (murine) / [118]
[119]
PKCs / NADPH oxidase activator 1 (NOXA1) / Ser-172 / [120]
PKCζ
cPKCs / NADPH oxidase component p47phox / Ser-303, Ser-304, and Ser-315
Ser-303, Ser-304, Ser-320, and Ser-328 / [121]
[122]
PKCs / Na,K-ATPase α-subunit / Ser-11 and Ser-18
Ser-774 and Thr-938 / [123]
[124]
PKCs / NAP-22 (also known as GAP-23 and BASP1) / Ser-6 / [125]
PKCθ / NDRG2 (NDRG family member 2) / Ser-332 / [126]
PKCs / Neurogranin (also known as p17, BICKS, or RC3 protein) / Ser-36 / [127, 128]
PKCs / Neuronal growth-associated protein B-50 (also known as GAP-43, protein F1, p57, pp46, or neuromodulin) / Ser-41 (mammals)/Ser-42 (chick)
Ser-209 / [129, 130]
[131]
PKCα / NG2 proteoglycan / Thr-2256 / [132]
PKCs / N-methyl-D-aspartate (NMDA) receptor 1 subunit / Ser-890 and Ser-896 / [133, 134]
PKCβII / Nonmuscle myosin heavy chain IIA / Ser-1917 / [135]
PKCs / Nonmuscle myosin heavy chain IIB / Ser-362 and Ser-370/Ser-368 and Ser-370 (βF47/αF47) / [136]
cPKCs
PKCβII
PKCα / Nuclear lamin (also known as class V intermediate filament) A
Nuclear lamin B
Nuclear lamin C / Ser-5 and Ser-525
Ser-395 and Ser-405
Ser-572 / [137]
[138, 139]
[140]
PKCs / Nucleolar protein B23 (also known as nucleophosmin, numatrin, or nucleolar protein NO38) / Ser-225 / [141]
PKCη / Occludin / Thr-403 and Thr-404 / [142]
PKCs / Opi1p / Ser-26 / [143]
aPKCs (PKCζ and λ) / Par-1b kinase / T595 / [144, 145]
aPKCs / Par-3 / Ser-827 / [146]
PKCs / P-glycoprotein / Ser-661 / [147]
PKCs / Phosphatidylinositol transfer protein (PI-TP)α / Ser-166 / [148]
PKCs / Phosphodiesterase (PDE) 3A / Ser-312, Ser-428, Ser-438, Ser-465, and Ser-492 / [149]
PKCζ / 3-phosphoglycerate dehydrogenase (PHGDH) / Ser-55, Thr-57, and Thr-78 / [150]
PKCθ / Phosphoinositide-dependent protein kinase-1 (PDK1) / Ser-504 and Ser-532 / [151]
PKCs / Phospholemman (PLM) (also known as FXYD1) / Ser-63 and Ser-68
Thr-69 / [152]
[153]
PKCs / Phospholipase D1 (PLD1) / Ser-2, Thr-147, and Ser-561 / [154]
PKCδ / Phospholipid scramblase / Thr-161 / [155]
PKCs / Phosphoprotein enriched in diabetes-15 (PED-15) [(also known as phosphoprotein enriched in astrocytes (PEA)-15] / Ser-104 / [156]
PKCζ / Phosphoprotein of human parainfluenza virus type 3 / Ser-333 / [157]
PKCα, β, γ, and ζ / Phosphoprotein of rabies virus / Ser-162, Ser-210, and Ser-271 / [158]
PKCs / pp60src / Ser-12 / [159, 160]
PKCζ / Profilin / Ser-137 / [161]
PKCs / Protamine P1
Protamine P2 (stallion) / Ser-21 for human and Ser-29 for stallion
Ser-32 / [162, 163]
[162]
PKCα / Protein interacting with C kinase 1 (PICK1) / Ser-77 / [164]
PKCε and η/δ
PKCδ / Protein kinase D / Ser-744 and Ser-748/Ser-738 and Ser-742 (mouse/human)
Ser-412 (human) / [165, 166]
[167]
PKCs / Protein phosphatase inhibitor-1 / Ser-65 / [168]
PKCs / Protein tyrosine phosphate PTP-PEST / Ser-39 and Ser-435 / [169]
PKCs / p120-catenin / Ser-873 / [170]
aPKCs (PKCζ) / p21 [cyclin-dependent kinase (Cdk) inhibitor] / Ser-146 / [171]
PKCs / Ser-153 / [172]
PKCα
PKCδ / p53 tumor suppressor / Ser-371 (human)
Ser-46 / [173]
[174]
PKCs / Ser-360, Thr-365, Ser-370, Thr-371, Ser-372, and Thr-377 (mouse) / [175, 176]
PKCδ / p73β (one of p53 homologs) / Ser-289 / [177]
PKCs / Rad / Ser-214, Ser-257, Ser-273, Ser-290, and Ser-299 / [178]
PKCα / Raf-1 / Ser-497 and Ser-499 / [179]
PKCs / Ser-497 and Ser-619 / [180]
cPKCs and aPKCs / Raf kinase inhibitory protein / Ser-153 / [181]
PKCθ
PKCθ / RasGRP2 (Ras guanine-releasing protein 2)
RasGRP3 / Ser-960
Thr-133 / [182]
[183]
PKCs / Ras p21 (H-ras p21 and K-ras p21) / Ser-177 for H-ras p21 and Ser 181 for K-ras p21 / [184-186]
PKCs / Receptor-like protein-tyrosine phosphatase (RPTP)α / Ser-180 and Ser-204 / [187]
PKCζ / RelA / Ser-311 / [188]
PKCα / Retinoic acid-related orphan nuclear receptor (ROR)α / Ser-35 / [189]
cPKCs / Ribosomal protein S6 / Ser-5, Ser-9, and Ser-11 / [190]
PKCβΙ, βII, and δ / Ribosomal protein S6 kinase (S6K) βII / Ser-486 / [191]
PKCε / RhoA / Thr-127 and Ser-188 / [192]
PKCs / Rhodopsin / Ser-334 / [193]
PKCα / RLIP76 / Thr-297 / [194]
PKCs / ROMK1 (also known as KIR1.1) / Ser-4 and Ser-201 / [195]
PKCs / Seminal vesicle protein IV / Ser-58 / [196]
PKCs / SM22 (also known as smooth muscle protein 22 or transgelin) / Ser-181 / [197]
PKCs / Smooth muscle caldesmon / Ser-127, Ser-587, Ser-600, Ser-657, Ser-686, and Ser-726 (major phosphorylation site, Ser-587 and Ser-600) / [198, 199]
PKCs / Smooth muscle myosin light chain / Ser-1 and/or Ser-2 and Thr-9 / [200, 201]
PKCζ / Sp1 (specificity protein 1) / Ser-641 / [202]
PKCδ / Stat3 (signal transducer and activator of transcription 3) / Ser-727 / [203]
PKCε / Ser-727 / [204]
PKCs / Synaptosomal-associated protein of 25 kDa (SNAP-25) / Ser-187 / [205]
PKCs / Synaptotagmin Ι / Thr-112 / [206]
PKCs / Syndecan cytoplasmic domain / Ser-197 and Ser-339 / [207]
PKCs / Tac antigen (interleukin 2 receptor) / Ser-247 and Ser-250 / [208]
PKCs / Talin (cytoskeletal protein) / Thr-144, Thr-150, and Ser-425 / [209]
PKCs / Tau (microtubule-associated proteins) / Ser-293, Ser-305, and Ser-324 / [210, 211]
PKCs / Transcription factor C/EBP (CCAAT/enhancer-binding protein) / Ser-248 / [212]
PKCε / Transient receptor potential cation channel subfamily V member 1 (TRPV1) (known as capsaicin receptor or vanilloid receptor) / Ser-800 / [213]
PKCs / Transferrin receptor / Ser-24 / [214]
PKCδ / Troponin I (TnI) (bovine) / Ser-23/Ser-24 / [215]
PKCs / Ser-43/45, Ser-78, and Thr-144 / [216, 217]
PKCα, δ, and ε / Troponin T (TnT) (bovine) / Thr-190, Thr-194, Thr-199, and Thr-280 / [215]
PKCs / Thr-190, Thr-199, and Thr-280
Thr-197, Ser-201, Thr-206, and Thr-287 (functionally critical phosphorylation site, Thr-206) / [216]
[218]
PKCε / UDP-glucuronosyltransferase (UGT) 1A7 / Ser-432 / [219]
PKCs / Vasodilator-stimulated phosphoprotein (VASP) / Ser-157 / [220]
PKCs / Vimentin / Ser-4, Ser-6, Ser-7, Ser-8, and Ser-9 / [221, 222]
PKCα / Vinculin / Ser-1033 and Ser-1045 / [223]
PKCs / Vitronectin / Ser-362 / [224]
PKCβ / Vitamin D receptor / Ser-51 / [225]
PKCs / Yeast choline kinase / Ser-30 / [226]

a PKCs, unknown PKC isozymes; cPKCs, conventional or classic PKCs; and aPKCs, atypical PKCs.

Supplementary references

[1] Y. Matsuoka, C. A. Hughes, and V. Bennett V, “Adducin regulation. Definition of the calmodulin-binding domain and sites of phosphorylation by protein kinases A and C,” The Journal of Biological Chemistry, vol. 271, no. 41, pp. 25157-25166, 1996.

[2] S. Kitamura, S. Ando, M. Shibata, K. Tanabe, C. Sato, and M. Inagaki, “Protein kinase C phosphorylation of desmin at four serine residues within the non-α-helical head domain,” The Journal of Biological Chemistry, vol. 264, no. 10, pp. 5674-5678, 1989.

[3] M. Liang, N. J. Freedman, C. T. Theiss, and S. B. Liggett, “Serine 232 of theα2A-adrenergic receptor is a protein kinase C-sensitive effector coupling switch,” Biochemistry, vol. 40, no. 49, pp. 15031-15037, 2001.

[4] X. A. Zhang, A. L. Bontrager, C. S. Stipp et al., “Phosphorylation of a conserved integrin α3 QPSXXE motif regulates signaling, motility, and cytoskeletal engagement,” Molecular Biology of the Cell, vol. 12, no. 2, pp. 351-365, 2001.

[5] L. Wecker and C. Q. Rogers CQ, “Phosphorylation sites within α4 subunits of α4β2 neuronal nicotinic receptors: a comparison of substrate specificities for cAMP-dependent protein kinase (PKA) and protein Kinase C (PKC),” Neurochemical Research, vol. 28, no. 3-4, pp. 431-436, 2003.

[6] V. V. Pollock, T. E. Pastoor, and L. Wecker, “Cyclic AMP-dependent protein kinase (PKA) phosphorylates Ser362 and 467 and protein kinase C phosphorylates Ser550 within the M3/M4 cytoplasmic domain of human nicotinic receptor α4 subunits,” Journal of Neurochemistry, vol. 103, no. 2, pp. 456-466, 2007.

[7] F. Hogervorst, I. Kuikman, E. Noteboom, and A. Sonnenberg, “The role of phosphorylation in activation of the α6Aβ1 laminin receptor,” The Journal of Biological Chemistry, vol. 268, no. 25, pp. 18427-18430, 1993.

[8] C. Gimond, A. de Melker, M. Aumailley, and A. Sonnenberg, “The cytoplasmic domain of α6A integrin subunit is an in vitro substrate for protein kinase C. Experimental Cell Research, vol. 216, no. 1, pp. 232-235, 1995.

[9] T. P. Abeyweera, X. Chen, and S. Rotenberg, “Phosphorylation of α6-tubulin by protein kinase Cα activates motility of human breast cells,” The Journal of Biological Chemistry, vol. 284, no. 26, pp. 17648-17656, 2009.

[10] S. Gandy, A. J. Czernik, and P. Greengard, “Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 16, pp. 6218-6221, 1988.

[11] T. Suzuki, A. C. Nairn, S. E. and P. Gandy, Greengard, “Phosphorylation of Alzheimer amyloid precursor protein by protein kinase C,” Neuroscience, vol. 48, no. 4, pp. 755-761, 1992.

[12] H. Qian, L. Pipolo, and W. G. Thomas, “Identification of protein kinase C phosphorylation sites in the angiotensin II (AT1A) receptor,” Biochemical Journal, vol. 343, no. 3, pp. 637-644, 1999.

[13] D. D. Schlaepfer and H. T. Haigler, “In vitro protein kinase C phosphorylation sites of placental lipocortin,” Biochemistry, vol. 27, no. 12, pp. 4253-4258, 1988.

[14] L, Varticovski, S. B. Chahwala, M. Whitman et al., “Location of sites in human lipocortin I that are phosphorylated by protein tyrosine kinases and protein kinases A and C,” Biochemistry, vol. 27, no. 10, pp. 3682-3690, 1988.

[15] K. L. Gould, J. R. Woodgett, C. M. Isacke, and T. Hunter, “The protein-tyrosine kinase substrate p39 is also a substrate for protein kinase C in vitro and in vivo,” Molecular and Cellular Biology, vol. 6, no. 7, pp. 2738-2744, 1986.

[16] W. Luo, G. Yan, L. Li et al., “Epstein-Barr virus latent membrane protein 1 mediates serine 25 phosphorylation and nuclear entry of annexin A2 via PI-PLC-PKCα/PKCβ pathway,” Molecular Carcinogenesis, vol. 47, no. 12, pp. 934-946, 2008.

[17] K. Weber, N. Johnsson, U. Plessmann et al., “The amino acid sequence of protein II and its phosphorylation site for protein kinase C; the domain structure Ca2+-modulated lipid binding proteins,” The EMBO Journal, vol. 6, no. 6, pp. 1599-1604, 1987.

[18] J. Leis, N. Phillips, X. Fu, P. T. Tuazon, and J. A. Traugh, “Phosphorylation of avian retrovirus matix protein by Ca2+/phospholipid-dependent protein kinase,” European Journal of Biochemistry, vol. 179, no. 2, pp. 415-422, 1989.

[19] K. N. Thimmaiah, J. B. Easton, and P. J. Houghton, “Protection from rapamycin-induced apoptosis by insulin-like growth factor-1 is partially dependent on protein kinase C signaling,” Cancer Research, vol. 70, no. 5, pp. 2000-2009, 2010.

[20] S. Desai, P. Pillai, H. Win-Piazza, and M. Acevedo-Duncan, “PKC-ι promotes glioblastoma cell survival by phosphorylating and inhibiting BAD through a phosphatidylinositol 3-kinase pathway,” Biochimica et Biophysica Acta, vol. 1813, no. 6, pp. 1190-1197, 2011.

[21] J. J. Feige and A. Baird, “Basic fibroblast growth factor is a substrate for protein phosphorylation and is phosphorylated by capillary endothelial cells in culture,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 9, pp. 3174-3178, 1989.

[22] J. Villar, H. S. Quadri, I. Song, Y. Tomita, O. M. Tirado, and V. Notario, “PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase Cα-mediated Bcl-2 stabilization,” Cancer Research, vol. 69, no. 1, pp. 102-110, 2009.

[23] N. Li, Z. X. Du, Z. H. Zong et al., “KCδ-mediated phosphorylation of BAG3 at Ser187 site induces epithelial-mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells,” Oncogene, vol. 32, no. 88, pp. 4539-4548, 2013.

[24] J. Gwak, M. Cho, S. J. Gong et al., “Protein-kinase-C-mediated β-catenin phosphorylation negatively regulates the Wnt/β-catenin pathway,” Journal of Cell Science, vol. 119, no. 22, pp. 4702-4709, 2006.

[25] M. Bouvier, N. Gulbault, and H. Bonin, “Phorbol-ester-induced phosphorylation of the β2-adrenergic receptor decreases its coupling to Gs,” FEBS Letters, vol. 279, no. 2, pp. 243-248, 1991.

[26] N. Yuan, J. Friedman, B. S. Whaley, and R. B. Clark, “cAMP-dependent protein kinase and protein kinase C consensus site mutations of the β-adrenergic receptor: Effect on desensitization and stimulation of adenylylcyclase,” The Journal of Biological Chemistry, vol. 269, no. 37, pp. 23032-23038, 1994.

[27] K. Wilhelmsen, S. H. M. Litjens, I. Kuikman, C. Margadant, J. van Rheenen, and A. Sonnenberg, “Serine phosphorylation of the integrin β4 subunit is necessary for epidermal growth factor recptor-induced hemidesmosome disruption,” Molecular Biology of the Cell, vol. 18, no. 9, pp.35512-3522, 2007.

[28] I. Rabinovitz, L. Tsomo, and A. M. Mercurio, “Protein kinase C-α phosphorylation of specific serines in the connecting segment of the β4 integrin regulates the dynamics of type II hemidesmosomes,” Molecular Biology of the Cell, vol. 24, no. 10, pp. 4351-4360, 2004.

[29] X. B. Zhou, I. Wulfsen, E. Utku et al., “Dual role of protein kinase C on BK channel regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 8005-8010, 2010.

[30] M. Schwemmle, B. De, L. Shi, A. Banerjee, and I. Lipkin, “Borna disease virus P-protein is phosphorylated by protein kinase Cε and casein kinase II,” The Journal of Biological Chemistry, vol. 272, no. 35, pp. 21818-21823, 1997.

[31] A. Blaukat, A. Pizard, A. Breit et al., “Determination of bradykinin B2 receptor in vivo phosphorylation sites and their role in receptor function,” The Journal of Biological Chemistry, vol. 276, no. 44, pp. 40431-40440, 2001.

[32] M. Trebak, N. Hempel, B. J. Wedel, J. T. Smyth, G. S. Bird, and J. W. Jr Putney, “Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712,” Molecular Pharmacology, vol. 67, no. 2, pp. 558-563, 2005.

[33] M. H. Zhu, M. R. Chae, H. J. Kim et al., “Desensitization of canonical transient receptor potential channel 5 by protein kinase C,” American Journal of Physiology Cell Physiology, vol. 289, no. 3, pp. C591-C600, 2005.

[34] J. Y. Kim and D. Saffen, “Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels,” The Journal of Biological Chemistry, vol. 280, no. 36, pp. 32035-32047, 2005.

[35] S. M. Bousquet, M. Monet, and G. Boulay, “Protein kinase C-dependent phosphorylation of transcient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition,” The Journal of Biological Chemistry, vol. 285, no. 52, pp. 40534-40543, 2010.

[36] A. S. Mohamed, J. D. Dignam, and K. K. Schlender, “Cardiac myosin-binding protein C (MyBP-C): identification of protein kinase A and protein kinase C phosphorylation sites,” Archives of Biochemistry and Biophysics, vol. 358, no. 2, pp. 313-319, 1998.

[37] S. Sadayappan, J. Gulick, H. Osinska et al., “A critical function of Ser-282 in cardiac myosin binding protein-C phosphorylation and cardiac function,” Circulation Research, vol. 109, no. 2, pp. 141-150, 2011.

[38] M. N. Waxham and J. Aronowski, “Ca2+/calmodulin-dependent protein kinase II is phosphorylated by protein kinase C in vitro,” Biochemistry, vol. 32, no. 11, pp. 2923-2930, 1993.

[39] K. Grobe and L. D. Powell, “Role of protein kinase C in the phosphorylation of CD33 (Siglec-3) and its effect on lectin activity,” Blood, vol. 99, no. 9, pp. 3188-3196, 2002.

[40] Y. Hou, J. Lascola, N. O. Dulin, R. D. Ye, and D. D. Browning, “Activation of cGMP-dependent protein kinase by protein kinase C,” The Journal of Biological Chemistry, vol. 278, no. 19, pp. 16706-16712, 2003.

[41] T. Megidish, J. Cooper, L. Zhang, H. Fu, and S. Hakomori, “A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforms of 14-3-3 protein,” The Journal of Biological Chemistry, vol. 273, no. 34, pp. 21834-21845, 1998.

[42] T. Dobransky, A. Doherty-Kirby, A. R. Kim, D. Brewer, G. Lajoie, and R. J. Rylett, “Protein kinase C isoforms differentially phosphorylate human choline acetyltransferase regulating its catalytic activity,” The Journal of Biological Chemistry, vol. 279, no. 50, pp. 52059-52068, 2004.

[43] P. Blume-Jensen, C. Wernstedt, C. H. Heldin, and L. Rönnstrand, “Identification of the major phosphorylation sites for protein kinase C in kit/stem cell factor receptor in vitro and in intact cells,” The Journal of Biological Chemistry, vol. 270, no. 23, pp. 14192-14200, 1995.

[44] J. Y. Kim, T. Valencia, S. Abu-Baker et al., “c-Myc phosphorylation by PKCζ represses prostate tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 16, pp. 6418-6423, 2013.

[45] W. Srisakuldee, M. M. Jeyaraman, B. E. Nickel, S. Tanguy, Z. S. Jiang, and E. Kardami, “Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state,” Cardiovascular Research, vol. 83, no. 4, pp. 672-681, 2009.

[46] P. D. Lampe, E. M. TenBroek, J. M. Burt, W. E. Kurata, R. G. Johnson, and A. F. Lau, “Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication,” The Journal of Cell Biology, vol. 149, no. 7, pp. 1503-1512, 2000.