Practice Problems
1.
inches(1' = 12") / centimeters
(1" = 2.54 cm) / meters
(1 m = 100 cm)
5' x 12''/1'
= 60 " + 4" = 64" / 64" x 2.54 cm/1"
= 160 cm / 160 cm x 10-2 m/cm
= 1.6 m
2. a.
Mass / 48.307 g / 49.886 g / 50.911 g / 49.524 gMean / (48.307 + 49.886 + 50.911 + 49.525) = 49.657 g
4
Deviation / 1.350 g / 0.229 g / 1.254 g / 0.133 g
Average Deviation / (1.350 +0.229 + 1.254 + 0.133) = 0.742
4
% D / 100(0.742/49.657) = 1.49 %
b.
(100)(50.000 – 49.657)/50.000 = 0.686 %c.
The measurements were more accurate than precise, because the % D was smaller than the % D.3. a.
Fs (N)30 /
20
10
0
0.1 / 0.2 / 0.3 / 0.4
x (m)
b.
slope = (32.0 – 0)/(0.40 – 0) = 80 N/mc.
k = slope = 80 N/md.
area = ½bh = ½(0.40)(32.0) = 6.4 N•me.
W = area = 6.4 N•m4.
x = rcosq = (110 km)cos25o = 100 kmy = rsinq = (110 km)sin25o = 46 km
5.
B / (15 mi + 25 mi)/1 hr = 40 mph6.
A / (30 mi + 30 mi)/(1 hr + 0.6 hr) = 37.5 mph7.
A / Velocity and displacement always go together, but acceleration is Dv, which could be from + to – v.8.
D / you can have a constant velocity with displacement when acceleration is zero.9.
C / Negative velocity is going backwards, but positive acceleration is opposite velocity \ slowing down.10.
B / Displacement and velocity have the same sign, but gravity is always downward (–).11.
D / Acceleration is constant and downward at all times12.
B / Ball is momentarily stopped, but still's falling down.13.
C / Same because both accelerate by gravity.14.
C / Bill's ball is –v when it travels downward from h \ they both land with the same velocity.15.
B / Ball goes from +v ® 0 ® -v (on the way down).16.
C / The first ball is always faster \ it separates from the second.17.
B / Same acceleration \ Dv is same, even though first is faster.18. a.
7 m + 3 m = 10 mb.
7 m + (-3 m) = 4 mc.
vav = 4 m/10 s = 0.4 m/sd.
speed = 10 m/10 s = 1 m/s19. a.
d = x – xo = 30 m – 50 m = -20 mb.
v = d/t = -20 m/2 s = -10 m/s20. a.
d / vav / t150 m / v / 17 s
b.
v = d/t = 150 m/17 s = 8.8 m/s21.
d / vav / td / 5 m/s / 2 x 3600 s
d = vt = (5 m/s)(7200 s) = 36,000 m
22. a.
a = (vt – vo)/t = (15 m/s – 0 m/s)/5.0 s = 3 m/s2b.
a = (vt – vo)/t = (5 m/s – 15 m/s)/5 s = -2 m/s223. a.
d / vo / vt / a / td / 15 m/s / 0 m/s / a / 3 s
b.
vt = vo + at0 m/s = 15 m/s + a(3 s) \ a = - 5 m/s2
24.
d / 0 / 28 m/s / 2 m/s2 / t
vt2 = vo2 + 2ad
(28 m/s)2 = 0 + (2)(2 m/s2)d \ d = 196 m
25.
d / vo / vt / a / t-100 m / 0 / vt / -10 m/s2 / t
d = vot + ½at2
100 m = 0 + ½(-10 m/s2)t2 \ t = 4.5 s
26.
d / vo / vt / a / td / 0 / 900 m/s / a / 180 s
d = ½(vo + vt)t = ½(0 m/s+ 900 m/s)(180 s) = 81,000 m
27.
d / vo / vt / a / td / 0 / vt / -10 m/s2 / 5 s
d = vot + ½at2 = 0 + ½(-10 m/s2)(5 s)2 = 125 m
28.
d / vo / vt / a / td / 10 m/s / 30 m/s / a / 10 s
a.
vt = vo + at30 m/s = 10 m/s + a(10 s) \ a = 2 m/s2
b.
d = ½(vo + vt)t = ½(10 m/s+ 30 m/s)(10 s) = 200 m29.
d / v / td / 30 m/s / 0.5 s
a.
d = vt = (30 m/s)(0.5 s) = 15 md / vo / vt / a / t
d / 30 m/s / 0 / -6.0 m/s2 / t
b.
vt2 = vo2 + 2ad02 = (30 m/s)2 + (2)(-6.0 m/s2)d \ d = 75 m
c.
dtotal = d1 + d2 = 15 m + 75 m = 90 m30. a.
vav = ½(vo + vt)20 m/s = ½(0 + vt) \ vt = 40 m/s
d / vo / vt / a / t
d / 0 / 40 m/s / 2.5 m/s2 / t
b.
vt = vo + at40 m/s = 0 + (2.5 m/s2)t \ t = 16 s
c.
d = vot + ½at2d = 0 + ½(2.5 m/s2)(16 s)2 = 320 m
31. a.
on the way up / at the ball's highest / on the way down-10 m/s2 / -10 m/s2 / -10 m/s2
b.
d / vo / vt / a / td / 20 m/s / 0 / -10 m/s2 / t
(1)
vt2 = vo2 + 2ad0 = (20 m/s)2 + 2(-10 m/s2)d \ d = 20 m
(2)
vt = vo + at0 = 20 m/s + (-10 m/s2)t \ t = 2 s
c.
How much time is the ball in the air? / 4 sHow fast is the ball when it returns? / -20 m/s
32.
A / position-time graph is curved.33.
C / Their positions were equal at 0 and 7 seconds \ they have the same displacement.34.
A / The slope of the line at 7 seconds is greater for car A.35.
C / Velocity goes from 0 to –v.36.
B / Velocity goes from +v ® 0 ® -v.37.
v
0 t
38. a.
0 s to 8 s / 10 s to 18 s / 20 s to 24 sv = d/t = 12 m/8 s
v = 1.5 m/s / v = d/t = 0 m/8 s
v = 0 m/s / v = d/t = -10 m/4 s
v = -2.5 m/s
b.
8 s to 10 s / 18 s to 20 sa = Dv/t = -1.5 m/s/2 s
a = -0.75 m/s2 / a = Dv/t = -2.5 m/s/2 s
a = -1.25 m/s2
c.
v (m/s)
21
0
-1
-2
-3
4 / 8 / 12 / 16 / 20
t (s)
39. a.
0 s and 5-7 sb.
Between 10 s and 11 s; this is when +Area = -Areac.
0 to 2 s / 2 s to 3 sa = Dv/t = (-1 m/s – 0)/2 s
a = -1 m/s2 / a = Dv/t = (0)/2 s
a = 0
3 s to 5 s / 5 s to 7 s
a = Dv/t = (0 – -2 m/s)/2 s
a = 1 m/s2 / a = Dv/t = (0)/2 s
a = 0
7 s to 11 s / 11 s to 12 s
a = Dv/t = (5 m/s – 0)/5 s
a = 1 m/s2 / a = Dv/t = (0)/1 s
a = 0
d.
a (m/s2)
10
-1
2 / 4 / 6 / 8 / 10
t (s)
40. a.
vt = vo + at20 m/s = 0 + (2.5 m/s2)t \ t = 8 s
b.
d = vot + ½at2 = 0 + ½(2.5 m/s2)(8 s)2 = 80 mc.
vt = vo + at0 = (20 m/s) + (-4 m/s2)t \ t = 5 s
d.
d = ½(vo + vt)t = ½(20 m/s + 0)(5 s) = 50 me.
d = 200 m – 80 m – 50 m = 70 mt = d/v = 70 m/20 m/s = 3.5 s
f.
ttotal = 0.3 s + 8 s + 3.5 s + 5 s = 16.8 s41.
vt2 = vo2 + 2ad(0)2 = (90 m/s)2 + 2a(605 m) \ a = -6.7 m/s2
42. a.
vav = ½(vo + vt)40 m/s = ½(30 m/s + vt) \ vt = 50 m/s
b.
vt = vot + at50 m/s = 30 m/s + (0.8 m/s2)t \ t = 25 s
c.
d = ½(vo + vt)t = ½(30 m/s + 50 m/s)(25 s) = 1000 m43. a.
on the way up / at the highest point / on the way downdown / down / down
b.
vt2 = vo2 + 2ad0 = (40 m/s)2 + 2(-10 m/s2)d \ d = 80 m
c.
vt = vo + at0 = 40 m/s + (-10 m/s2)t \ t = 4 s
d.
2 x 4s = 8 se.
-40 m/s44.
motion graphed / d vs. t / v vs. t / a vs. tstationary / d / d / d
constant positive velocity / c / a / d
constant positive acceleration / b / c / a
45. a.
a (m/s2)
10
-1
2 / 4 / 6 / 8 / 10
t (s)
Practice Multiple Choice
1.
D / vt2 = vo2 + 2advt2 = 0 + 2(5 m/s2)(250 m)\ vt = 50 m/s
2.
C / vt = vo + atvt = (0.5 m/s) + (10 m/s2)(0.70 s) = 7.5 m/s
3.
A / vt = vo + at11.2 m/s = 9.6 m/s + a(4 s) \ a = 0.4 m/s2
4.
C / vt2 = vo2 + 2advt2 = 0 + 2(10 m/s2)(20 m) \ vt = 20 m/s
5.
D / d = ½(vo + vt)td = ½(0 + 30 m/s)(6 s) = 90 m
6.
A / Displacement is shortest distance between two points with changes direction displacement is less.7.
D / d = vot + ½at2d = 0 + ½(10 m/s2)(6 s)2 = 180 m
8.
A / d = vot + ½at240 m = 0 + ½(10 m/s2)t2 \ t = 2Ö2 = 2.8 s
9.
C / vt2 = vo2 + 2ad0 = (30 m/s)2 + 2(-10 m/s2)d \ d = 45 m
10.
A / Acceleration is the change in velocity/time \ velocity increases by 9.8 m/s each second.11.
D / At the highest point, it momentarily stops (v = 0), but acceleration due to gravity is constant (a < 0).12.
C / d = vot + ½at23 m = 0 + ½a(1 s)2 \ a = 6 m/s2
13.
A / A position/time graph that is a straight diagonal line represents constant velocity \ the acceleration is zero.14.
B / d = area of a triangle is ½ bh \d = ½(t)(vt - vo) = ½(4 s)(20 m/s) = 40 m
15.
A / d = ½at2 \ curved line with increasing slope.16.
D / Falling object has constant, negative acceleration.17.
D / d = ½at2 \ curved upward, v = at \ diagonal line18.
B / d = [(400 m)2 + (300 m)2]½ = 500 mt = 60 s + 40 s = 100 s \ v = d/t = 500 m/100 s = 5 m/s
19.
20.
A / Displacement equals area. Since the area under Car X is greater than under car Y, then car X is ahead.21.
D / Displacement equals area. The area under the car Y equals the area under the car X at 40 s.22.
C / d1 = vot + ½at2 ® 1 = 0 + ½a(1)2 \ a = 2 m/s2d2 = vot + ½at2 = 0 + ½(2 m/s2)(2 s)2 = 4 m – 1 m = 3 m
23.
A / Object moving at constant velocity from 0 s to 1 s, slowing from +v to –v from 1 s to 2 s, then back.24.
C / d = vot + ½at2 = (24 m/s)(11 s) + ½(-6 m/s)(10 s)2 = –36 m25.
B / vav = d/t = 8 m/2 s = 4 m/s26.
D / When accelerating from rest with constant acceleration, vt = 2vav \ vt = 2(4 m/s) = 8 m/sPractice Free Response
1.
Cart is moving away from origin / 0-5 s, 9-11sCart is stationary / 0 s, 5 s, 11 s
Cart is moving toward the origin / 5-9 s, 11-12 s
Cart has returned to origin / 9 s
When farthest from the origin / 5 s
Positive acceleration / 0-2 s, 9-12 s
Zero acceleration / 2-3 s, 7-9 s
Negative acceleration / 3-7 s
2.
vt2 = vo2 + 2ad(25 m/s)2 = 0 + 2a(180 m) \ a = 1.7 m/s2
vt2 = vo2 + 2ad
vt2 = (25 m/s)2 + 2(1.7 m/s2)(95 m) \ vt = 31 m/s
3. a.
d = vot + ½at2d = 0 + ½(30 m/s2)(2 s)2 = 60 m
b.
vt = vo + atvt = (30 m/s2)(2 s) = 60 m/s
c.
vt2 = vo2 + 2ad0 = (60 m/s)2 + 2(-10 m/s2)d \ d = 180 m + 60 m = 240 m
d.
v = vo + at0 = 60 m/s + (-10 m/s2)t \ t = 6 s + 2 s = 8 s
e.
d = vt-240 m = (5 m/s)t \ t = 48 s
4. a.
Position, x (m) / 0.00 / 0.22 / 0.70 / 1.35 / 2.10
Velocity, vav (m/s) / 0.44 / 0.96 / 1.30 / 1.50
b.
vt (m/s)
1.41.0
0.8
0.4
0
0.4 / 0.8 / 1.2 / 1.6
t (s)
c. (1)
slope = a = Dv/Dta = (1.60 – 0.60 m/s)/(1.80 – 0.40 s) = 0.71 m/s2
(2)
y-intercept = vo = 0.30 m/sd. (1)
vt = vo + atvt = 0.30 m/s + (0.71 m/s2)(2.00 s) = 1.7 m/s
(2)
vt2 = vo2 + 2ad(1.7 m/s)2 = 0 + 2(0.71 m/s2)d \ d = 2.0 m
5. a.
vt2 = vo2 + 2ad = 0 + 2(-10 m/s2)(-15 m) = 17.3 m/svt2 = vo2 + 2ad \ 0 = (17.3 m/s)2 + 2a(1 m) \ a = -150 m/s2
b.
You would loosen the net so that the distance for deceleration is greater (v2 = vo2 + 2ad).