Supporting Information
Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk
Rui Deng1, Daohui Lin1,2,*, Lizhong Zhu1,2, Sanghamitra Majumdar3, Jason C. White3,
Jorge L. Gardea-Torresdey4,6, Baoshan Xing5
1Department of Environmental Science, Zhejiang University, Hangzhou 310058, China;
2Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China;
3 The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA;
4 Department of Chemistry, The University of Texas at El Paso, El Paso, TX 79968, USA;
5 Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
6 University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX 79968, USA
*Corresponding author: Tel.: +86 571 88982582; fax: +86 571 88982590.
E-mail address: (D. Lin)
Articles directly matching the scope of this paper are chronologically listed below.
2005
Yang L, Watts DJ. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122-32.
2007
Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC. 2007. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160-6.
2008
Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB. 2008. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379-87.
Huang ZB, Zheng X, Yan DH, Yin GF, Liao XM, Kang YQ, Yao YD, Huang D, Hao BQ. 2008. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140-4.
Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, Holecová M, Zbořil R. 2008. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825-34.
Zhang JH. 2008. Study on synergistic oxidative stress and genotoxicity caused by trace DDT and nanoparticle titanium dioxide in human derived fetal hepatocytes. Huazhong University of Science and Technology (Chin Ver).
2009
Guo B, Zebda R, Drake SJ, Sayes CM. 2009. Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Part Fibre Toxicol 6.
Petersen EJ, Pinto RA, Landrum PF, Weber JWJ. 2009. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Environ Sci Technol 43:4181-7.
2010
Li ZQ, Greden K, Alvarez PJJ, Gregory KB, Lowry GV. 2010. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44:3462-7.
Yang XY, Edelmann RE, Oris JT. 2010. Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna. Aquat Toxicol 100:202-10.
2011
Fang LP, Borggaard OK, Holm PE, Hansen HCB, Cedergreen N. 2011. Toxicity and uptake of TRI- and dibutyltin in Daphnia magna in the absence and presence of nano-charcoal. Environ Toxicol Chem 30:2553-61.
Lee S, Kim K, Shon HK, Kim SD, Cho J. 2011. Biotoxicity of nanoparticles: Effect of natural organic matter. J Nanopart Res 13:3051-61.
Wang DH, Hu J, Forthaus BE, Wang JM. 2011a. Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia. Environ Pollut 159:3003-8.
Wang DM, Hu J, Irons DR, Wang JM. 2011b. Synergistic toxic effect of nano-TiO2 and As(V) on Ceriodaphnia dubia. Sci Total Environ 409:1351-6.
Wang ZY, Li J, Zhao J, Xing BS. 2011c. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032-40.
Zhu XS, Zhou J, Cai ZH. 2011. TiO2 nanoparticles in the marine environment: Impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environ Sci Technol 45:3753-8.
2012
Bai Y, Park IS, Lee SJ, Wen PS, Bae TS, Lee MH. 2012. Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity. Colloid Surface B 89:101-7.
De La Torre-Roche R, Hawthorne J, Deng YQ, Xing BS, Cai WJ, Newman LA, Wang C, Ma XM, White JC. 2012. Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species. Environ Sci Technol 46:9315-23.
Gao J, Powers K, Wang Y, Zhou HY, Roberts SM, Moudgil BM, Koopman B, Barber DS. 2012. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere 89:96-101.
Hartmann NB, Legros S, Von der Kammer F, Hofmann T, Baun A. 2012. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat Toxicol 118-9, 1-8.
Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA. 2012. Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ Sci Technol 46:10772-80.
Lin DH, Ji J, Long ZF, Yang K, Wu FC. 2012a. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res 46:4477-87.
Wang M, Chen L, Chen SB, Ma YB. 2012. Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotox Environ Safe 79:48-54.
Wirth SM, Lowry GV, Tilton RD. 2012. Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46:12687-96.
Xia XH, Chen X, Zhao XL, Chen HT, Shen MH. 2012. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment. Environ Sci Technol 46:12467-75.
Yang WW, Li Y, Miao AJ, Yang LY. 2012a. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotox Environ Safe 85:44-51.
Yang WW, Miao AJ, Yang LY. 2012b. Cd2+ Toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7:e323003.
2013
Dai ZX, Yin Y, Wang SH. 2013. Effect of nanomaterials on ecotoxicity of phenanthrene in Carassius auratus. Environ Chem 32:1342-7.
De La Torre-Roche R, Hawthorne J, Musante C, Xing BS, Newman LA, Ma XM, White JC. 2013. Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ Sci Technol 47:718-25.
Horie M, Stowe M, Tabei M, Kato H, Nakamura A, Endoh S, Morimoto Y, Fujita K. 2013. Dispersant affects the cellular influences of single-wall carbon nanotube: The role of CNT as carrier of dispersants. Toxicol Mech Methods 23:315-22.
Josko I, Oleszczuk P, Pranagal J, Lehmann J, Xing BS, Cornelissen G. 2013. Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol Eng 60:50-9.
Kim JY, Kim K, Lee BG, Lim BJ, Kim SD. 2013b. Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotox Environ Safe 92:57-63.
Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV. 2013b. Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environ Sci Technol 47:13440-8.
Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Jr. Brown GE. 2013a. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47:5738-45.
Li M, Lin DH, Zhu LZ. 2013. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97-102.
Martinez DST, Alves OL, Barbieri E. 2013. Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J Phys Conf Ser 429:012043.
Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B. 2013. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47:7012-9.
Su Y, Yan XM, Pu YB, Xiao F, Wang DS, Yang M. 2013. Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese medaka (Oryzias latipes). Environ Sci Technol 47:4704-10.
Tao XJ, He YL, Fortner JD, Chen YS, Hughes JB. 2013. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna. Chemosphere 92:1245-52.
Tian BX, Wu LS, Wang GZ. 2013. The joint toxicity of TiO2 nanoparticles with phenanthrene and pyrene to Tigriopus japonicus. J Jimei Univ (Nat Sci)Jimei Daxue Xuebao Ziran Kexue Ban 18:241-5.
Yang SP, Bar-Ilan O, Peterson RE, Heideman W, Hamers RJ, Pedersen JA. 2013. Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environ Sci Technol 47:4718-25.
Zhu XD, Wang YJ, Sun RJ, Zhou DM. 2013. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 92:925-32.
2014
Balbi T, Smerilli A, Fabbri R, Ciacci C, Montagna M, Grasselli E, Brunelli A, Pojana G, Marcomini A, Gallo G, Canesi L. 2014. Co-exposure to nTiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci Total Environ 493:355-64.
Collin B, Oostveen E, Tsyusko OV, Unrine JM. 2014. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280-9.
Dhasmana A, Jamal QMS, Mir SS, Bhatt MLB, Rahman Q, Gupta R, Siddiqui MH, Lohani M. 2014. Titanium dioxide nanoparticles as guardian against environmental carcinogen Benzo[alpha]Pyrene. PLoS One 9:e1070689.
Everett WN, Chern C, Sun D, McMahon RE, Zhang X, Chen WA, Hahn MS, Sue HJ. 2014. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates. Toxicol Lett 225:177-84.
Huynh KA, McCaffery JM, Chen KL. 2014. Heteroaggregation reduces antimicrobial activity of silver nanoparticles: Evidence for nanoparticle-cell proximity effects. Environ Sci Technol Lett 1:361-6.
Patricks VO, Wepener V, Maboeta MS. 2014. Single and mixture toxicity of gold nanoparticles and gold(III) to Enchytraeus buchholzi (Oligochaeta). Appl Soil Ecol 84:231-4.
Rosenfeldt RR, Seitz F, Schulz R, Bundschuh M. 2014. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: A factorial approach using Daphnia magna. Environ Sci Technol 48:6965-72.
Simon A, Maletz SX, Hollert H, Schaeffer A, Maes HM. 2014. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation. Nanoscale Res Lett 9:396.
Song MY, Wang FB, Zeng LZ, Yin JF, Wang HL, Jiang GB. 2014. Co-exposure of carboxyl-functionalized single-walled carbon nanotubes and 17 alpha-ethinylestradiol in cultured cells: Effects on bioactivity and cytotoxicity. Environ Sci Technol 48:13978-84.
Tian SY, Zhang YD, Song CZ, Zhu XS, Xing BS. 2014. Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata). Environ Pollut 192:59-64.
Völker C, Gräf T, Schneider I, Oetken M, Oehlmann J. 2014. Combined effects of silver nanoparticles and 17α-ethinylestradiol on the freshwater mudsnail Potamopyrgus antipodarum. Environ Sci Pollut Res 21:10661-70.
Wang DL, Lin ZF, Yao ZF, Yu HX. 2014b. Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles. Chemosphere 108:70-5.
Wang J, Wang WX. 2014c. Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environ Toxicol Chem 33:632-40.
Wang QW, Chen Q, Zhou P, Li WW, Wang JX, Huang CJ, Wang XF, Lin KF, Zhou BS. 2014a. Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae. Nanotoxicology 8 Suppl 1:196-207.
Xie Y, Wang BB, Li FC, Ma L, Ni M, Shen WD, Hong FS, Li B. 2014. Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One 9:e101062.
Yang WW, Wang Y, Huang B, Wang NX, Wei ZB, Luo J, Miao AJ, Yang LY. 2014. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila. Environ Sci Technol 48:7568-75.
2015
Bai Y, Wang CY, Gao JJ, Su J, Ma W. 2015. A study on dispersion and antibacterial activity of functionalizing multi-walled carbon nanotubes with mixed surfactant. J Surfactant Deterg 18:957-64.
Campos-Garcia J, Martinez DST, Alves OL, Gervasio Leonardo AF, Barbieri E. 2015. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: Nanotubes enhance pesticide ecotoxicity. Ecotox Environ Safe 111:131-7.
Devi GP, Ahmed KBA, Varsha MKNS, Shrijha BS, Lal KKS, Anbazhagan V, Thiagarajan R. 2015. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158:149-56.
Fang Q, Shi XJ, Zhang LP, Wang QW, Wang XF, Guo YY, Zhou BS. 2015. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897-904.
Farkas J, Bergum S, Nilsen EW, Olsen AJ, Salaberria I, Ciesielski TM, Bączek T, Konieczna, L, Salvenmoser W, Jenssen BM. 2015. The impact of TiO2 nanoparticles on uptake and toxicity of benzo(a)pyrene in the blue mussel (Mytilus edulis). Sci Total Environ 511:469-76.
Li LXY, Fernández-Cruz ML, Connolly M, Conde E, Fernández M, Schuster M., Navas JM. 2015a. The potentiation effect makes the difference: Non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro. Sci Total Environ 505:253-60.
Li LXY, Hu LG, Zhou QF, Huang CH, Wang YW, Sun C, Jiang GB. 2015b. Sulfidation as a natural antidote to metallic nanoparticles is overestimated: CuO sulfidation yields CuS nanoparticles with increased toxicity in medaka (Oryzias latipes) embryos. Environ Sci Technol 49:2486-95.
Liu J, Wang WX. 2015. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure. Environ Toxicol Chem 34:2824-32.
Oleszczuk P, Jośko I, Skwarek E. 2015. Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna. Ecotoxicology 24:1923-32.
Qiang LW, Shi XM, Pan XY, Zhu LY, Chen M, Han YW. 2015. Facilitated bioaccumulation of perfluorooctanesulfonate in zebrafish by nano-TiO2 in two crystalline phases. Environ Pollut 206:644-51.
Rosenfeldt RR, Seitz F, Senn L, Schilde C, Schulz R, Bundschuh M. 2015. Nanosized titanium dioxide reduces copper toxicity: The role of organic material and the crystalline phase. Environ Sci Technol 49:1815-22.
Shrestha B, Anderson TA, Acosta-Martinez V, Payton P, Cañas-Carrell JE. 2015. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere. Ecotox Environ Safe 116:143-9.
Simon A, Preuss TG, Schäffer A, Hollert H, Maes HM. 2015. Population level effects of multiwalled carbon nanotubes in Daphnia magna exposed to pulses of triclocarban. Ecotoxicology 24:1199-212.