Mathematics:NumberandOperationsinBaseTen

ClusterHeading:Understandplacevalue

1.NBT.2

ContentStandard:Understandthatthetwodigitsofatwo-digitnumberrepresentamountsoftensandones.

PracticeStandard:MP6Attendtoprecision,MP7Lookforandmakeuseofstructure

Problem/TaskSuggestionsFormativeAssessmentSuggestions

Numbers,Numbers

Eachstudentreceives3 numbercards.

Choose2cardstomakethelargest2-digitnumber.

497

Now,choose2cardstomakethesmallest2-digitnumber.

Recordyouranswerandexplaintoa partnerhowyoufoundyouranswer.

Differentiation: Supports:

•Providearecordingsheetwith2 blankrectanglesforthelargestand smallest2-digitnumber.

•Provideanumbergrid.

Extensions:

•Createawordproblemthatusesthetwo2-digitnumbers.

•Howwouldhaveacardthatsayszerochangeyouranswer?Couldyouget abiggernumberorsmallernumberwithazeroandusing2 cards?

Solutions:

•Largestnumber:97,smallestnumber:7.

•Inordertomakethelargestnumber,thelargestnumeralhastogoin thetensplaceandthenextlargestintheonesplace.

•Inordertomakethesmallestnumber,thesmallestnumeralhastogo inthetensplaceandthenextsmallestintheonesplace.

ObservationofStudents

•Dotheyrecognizeplacevalue?

•Cantheyexplaintheirstrategy?

•Dotheyunderstandwhattheproblemis askingthemtodo?

•Cantheyreadthenumberoutloud?

QuestionstoGuideStudentThinking:

•Whatisa wronganswer?Howdoyouknowitiswrong?

•Canyoureadthenumberoutloud?

•Whatpartofthenumbercanyouchangetomakeitgreater/smaller?

Misconceptions

Studentsmay:

•Reversethetens/ones.

•Usenumbersnotgiven.

•Notuseall3 numbers(useonlythe2 numbersfromthelargest numbertomakethesmallestnumber).

VocabularyConsiderations

Greater,greatest,smaller,smallest,placevalue,tens,ones

Larger/largest

Createdby:SharonHolt,LauraParat,LauraRhoneyforAuroraUniversity’sOEDC5204

2.MD.8

ClusterHeading:Workwithtimeandmoney.

ContentStandard:Solvewordproblemsinvolvingdollarbills,quarters,dimes,nickelsandpennies,using$ and¢ symbolsappropriately.

PracticeStandard:MP1Makesenseofaproblemandpersevereinsolvingit.

Problem/TaskSuggestionsFormativeAssessmentSuggestions

HowCanYouMake25Cents?

Whatareall thedifferentwaysyoucanmake25cents?

(Givestudentsplentyofplay/realmoneyanda blanksheetofpaperfor

recording.Youmaywantstudentstoworkwitha partner.)

Differentiation

Supports

•Reada booksuchas“AQuarterfromtheToothFairy”thatlistsfour combinationsaspartofthestory.Thisgivesstudentsexamplesof solutionsandaplacetostart.

•Askafewquestionsofstrugglingstudentstodetermineif thestudent knowsthevalueofeachcoin.If he/shedoesnot,givethechild experienceswithcoingamesandactivities,suchasmatchinggames (coinstovalues),raceforadollar(rollingdice,takingdesignated penniesandtrading),playing“fish”or“concentration”wheresome cardshavepicturesofcoinsandothercardshavevalues.

•Askstudentstothinkofawaytomake25centswithonlypenniesand onlynickels,andaskthemiftheycouldtradeanyofthecoinsintheir combinationforacointhatwouldhavethesamevalue.Thiswould generateanothercombination,whichtheycouldwritedownontheir list.Ask,“Doyouthinktradingwillgiveyouothercombinations?”

•Providealistofvaluesofeachofthecoinstouseasareferenceor havethestudentcreatehis/herownreferencelistforcoins.

Extensions

•Pickupsomecoinsandhidethem.Haveyourpartneraskyouyes/no questionsaboutyourcoinstofigureouthowmanyandthevalue.

•Askaboutcombinationsofcoinstomake50centsoradollar.

Solution

13 ways:1quarter,25pennies,2dimes,1nickel,1 nickeland20pennies,2

dimes,5 pennies,2nickelsand15pennies,1dime,3nickels,3nickelsand

10pennies,1 dime,2nickelsand5 pennies,4nickelsand5 pennies,1

dime,1 nickeland10pennies,5nickels,1dimeand15pennies

Createdby:IllinoisStateBoardofEducationContentAreaSpecialists

Observationof theStudents

•Isthestudentabletorecognizewhattheproblemis asking?MP1

•Doesthestudentknowthevalueofeachofthecoins?

•Isthestudentabletousementalmathtodosimplecomputationsordo theyneedtouseanothertool?MP5

•Doesthestudentrecognizethatmultipleanswersarepossible?

•Canthestudentexplainhis/herprocesstootherstudents?MP6

•Isthestudentabletofindall13waystomake25cents?

QuestionstoGuideStudentThinking

•Isthereanotherway?

•Howareyoucertainthattherearenootherpossibilities?

•Whenprocessingtheproblemwiththewholegroup,askthestudents withfewermethodstopresentfirstandthenhavetheotherstudents addonsothateveryonecanparticipateintheconversation.

Misconceptions

Studentsmay

•Stopafterfindingonlyoneortwoways.

•Thinkthatlargersizedcoinsareworthmoreinvalue.

Vocabulary

•Cents,quarters,dimes,nickels,pennies,equal,value

2.OA.1

ClusterHeading:Representandsolveproblemsinvolvingadditionand subtraction

ContentStandard:Useadditionandsubtractionwithin 100tosolveone- andtwo-stepword problemsinvolvingsituationsof addingto, takingfrom, puttingtogether,takingapart,andcomparing,with unknownsinallpositions

PracticeStandard:MP1Makesenseof problemsandpersevereinsolvingthem.

Problem/TaskSuggestionsFormativeAssessmentSuggestions

AllRoadsLeadto100.

Writetwomathwordproblemswherebothanswerswouldbe100.Writethe equationthatgoeswitheachofyourstoriesandshowyourcomputation.Putan “E”bytheeasyproblemandan“H”bythehardproblem.Explainwhatmakes the easyproblemeasyandthehardproblemhard.

Differentiation

Supports

•Changethesuminthetaskto20insteadof 100

•Askstudentswhoare strugglingtowritea word problem.

•Scribeforthe studentas he/shedictatesverbally.

•Provideaprompttogetthe student startedsuchas “Astudentwasfilling boxeswithblocksand…” or“Iamthinkingof somenumbersthat…”.

•Askthestudenttodrawa pictureorfindapictureina magazine,andthen writeastoryaskingabout thenumberof itemsinthepicture.

•Underlinewordsintheproseof thestoryandshowthestudenthow to representthephraseusinganumberand/orsymbolfortheoperation.

Extensions

•Increasethe numberof storyproblemsthestudentshouldwrite.

•Havestudentswriteeachof their storyproblemsonaseparateindex card withtheir namebutno “E” and“H” indicated.Studentsexchangecardswith another student,solvetheproblemsonthecardsandthenindicatewhich problemtheythoughttheauthorwould havemarked“H” andwhy. Students would thencheckwiththeauthorto seeif theyagreedonthemostdifficult problem.

Solutionswill varydependingonthe storywritten.All shouldhavethesameanswer of 100. Someproblemsmayhaveonly1operationandonly twonumbersbut others could have multiplenumbersandbothadditionandsubtractionincluded.For instance,“The teacherput 85coloredcandiesin theclass candyjar.15studentseach tookapiecefromthebowl as anaward forgood work.Aparentbroughtinanother bagof 30piecesof candyandadded it tothejar. Howmanypiecesof candyarein

thejarnow?”(85–15+30= 100)

Createdby:IllinoisStateBoardofEducationContentAreaSpecialist

ObservationofStudents

•Arethesolutionstoeachofthewordproblems100?

•Iftherearecomputationerrors,aretheanswerscloseorarethere majorerrors?

•Aretheequationscorrectforeachofthestories?

•Doestheproblemhaveonlytwonumbersormultiplenumbers?

•Doesthestudentuseonlyaddition?Justsubtraction?Both

•Doestheexplanationforselectionofthehardestandeasiest problemmakesense?

•Doesthecomputationworkindicatethestudentusedmultiple strategiestofindtheirsolutions?

QuestionstoGuideStudentThinking

•Canyouthinkofalistofnumbersthataddupto100?

•Doyouknowasubtractionproblemwheretheansweris100?

•Haveyouconsideredjustusingnumbersthatendinzero?

•Canyouthinkofcoinsthatadduptoadollar?Couldyouuse thatinformationtowritea wordproblem?

•IfIgaveyouanequationcouldyouwriteawordproblemtogo withit?

Misconceptions

Studentsmay

•Thinktheycanonlyusetwonumbersintheirstory(and equation)

•Thinkthattheycanonlyuseadditionanddon’tconsider subtractionproblemsthatresultin100.

VocabularyConsiderations

-Solution,variable,equation,computation

Mathematics:OperationsandAlgebraicThinking

ClusterHeading:Representandsolveproblemsinvolvingadditionandsubtraction.

ContentStandard:Useadditionandsubtractionwithin100tosolveoneandtwo-stepwordproblemsinvolvingsituationsofaddingto,taking

2.OA.1

from,puttingtogether,takingapart,andcomparing,withunknownsinall positions,e.g.,by usingdrawingsandequationswitha symbolfor theunknownnumbertorepresenttheproblem.

PracticeStandards:MP1Makesenseofproblemsandpersevereinsolvingthem,MP2Reasonabstractlyandquantitatively.

Problem/TaskSuggestionsFormativeAssessmentSuggestions

BetheMathematicsAuthor

Writeawordproblemfor34–16=

Giveeachstudentan8.5”x11”recordingsheetthathasthemathequationat thetop.Leavehalfthepageforhim/hertowritethewordproblem.

Solvetheproblemusingpictures,words,numbers,andmathematicaltools thatmakesensetoyou.

Leavethebottomhalfofthepageblankforeachstudenttorepresentordraw his/hersolutions.

Differentiation

Support

•Askthestudentstodescribethewordproblemanddecideif theyagree thatitmatchestheoriginalmathsentence.

Extensions

•Writeyourownmathsentenceandwordproblemandaska classmateto solveit.

•Askthestudentstosolvea problemsuchas34- = 29

Solutions

Anyreasonablestoryandpictorialrepresentationleadingto34 –16=18.

ObservationofStudents

•Doeseachstudentunderstandthetask?

•Howdoeseachstudentrepresenthis/herthinking(counters/physical model,pictures,words,hundredschart,open-numberline)?

•Iseachstudentabletocommunicatehis/herideastoothers?

•Iseachstudentwillingtoshare-individually,smallgroup,orwhole group?

Examinestudent’swrittenwork

Doesthestudent:

•Haveastorythatmakessensewiththenumbersintheequation?

•Includeaccuratecalculations?

•Usecorrectnotation?

•Istherea correctlabeltogowiththeproblem?

QuestionstoGuideStudentThinking

•Whatdoesthe3in34mean?Theotherdigits?

•Couldyousolveorrepresenttheprobleminanotherway?

Misconceptions

•Student’sstorymayindicateanadditionprobleminsteadofa subtractionproblem.

•Studentsmayadd34+16.

•Studentsmaynotuseplacevalueunderstandingintheircalculation.

•Studentsmaycalculateananswerof28or22.

Adaptedfrom:HowtoAssessWhileYouTeachMath:FormativeAssessmentPracticeandLessons,GradesK-2:A MultimediaProfessionalLearningResource, byDanaIslas,MathSolutions,ISBN:978-1-935099-17-8

Mathematics:CountingandCardinality

ClusterHeadings:Counttotellthenumberofobjects.Comparenumbers

K.CC.4a

K.CC.6

ContentStandards:Understandtherelationshipbetweennumbersandquantities;connectcountingtocardinality.a.Whencountingobjects, saythenumbernamesinthestandardorder,pairingeachobjectwithoneandonlyonenumbernameandeachnumbernamewithoneand onlyoneobject.Identifywhetherthenumberofobjectsinonegroupisgreaterthan,lessthan,orequaltothenumberofobjectsinanother group,e.g.,byusingmatchingandcountingstrategies.

PracticeStandard:MP6Attendtoprecision,MP1 Makesenseoftheproblemandpersevereinsolvingthem.

Problem/TaskSuggestionFormativeAssessmentSuggestions

RollingaNumberCube

Givepairsofstudentsseveralunifixcubesandanumbercubewithnumerals

oneachside.Adjustthenumeralsonthenumbercubestoaddressthecurrent needsofthestudents.Studentstaketurnsrollinga numbercubeandcounting outthenumberofunifixcubesindicated.Thechildthensnapsthecounted cubesintoa trainandcompareshis/hertraintoa partnertoseewhohas

more.

Aftereachchildhashad5 turns,havehim/herlookatthefiveindividualtrains andtrytoseewhowouldhavethemostif theysnapthetrainstogether.After estimatingwhomayhavemoretheyeachsnaptheir5trainstogetherandlay thembesideeachothertoseewhichislonger.Finallytheymaycounttosee howmanyareineachlongtrain.

Differentiation

Support

•Usealargefoamrubbernumbercubewithdotsratherthannumerals.

Whenthestudentrollsthenumbercube,he/sheplacesaunifixcubeon

eachdot,thensnapsthemtogether.Nextstepistouseanumbercube withdotsandnumeral

Extensions

•Rolltwonumbercubesandfindthesumtodeterminethenumberof unifixcubestosnaptogetherandcompare.

•Determinenotonlywhohasmorebuthowmanymore.

ObservationofStudents

Doesthestudent

•Demonstratetheverbalcountingsequence?

•Recognizetherollednumeralandtakethatmanycubes?

•Use1-to-1correspondenceskills?

•Haveawayofkeepingtrackofhis/hercount?

•Realizethelastnumbersaidindicateshowmanyshe/hehas?

•Knowwhichtrainisbiggerbypriorknowledge,estimatingorby matching?

QuestionstoGuideStudentThinking

•Doyouknowwhichonesyouhavecounted?

•Wherecouldyouputthecountedcubes?

•Tellmehowyouknowwhichtrainhasmorecubes.

Misconceptions

Studentsmaynotunderstandthatthelastnumbertheysayindicateshow manyitemsareintheset.

VocabularyConsiderations

Greaterthan,lessthan,equalto

Taskadaptedfrom:DevelopingNumberConcepts:Counting,Comparing,andPatternsBook1 byKathyRichardson,Apr16,1998

K.CC.5

ClusterHeading:Counttotellthenumberofobjects.

ContentStandard:Counttoanswer“howmany?”questionsaboutasmanyas20thingsarrangedina line,arectangulararray,oracircle,or asmanyas10thingsinascatteredconfiguration;givena numberfrom1-20,countoutthatmanyobjects.

PracticeStandard:MP2Reasonabstractlyandquantitatively.

Problem/TaskSuggestionsFormativeAssessmentSuggestions

LettersinYourName

Showstudentsashort nameanda longname.Askabout differences.

Studentswill findout howmanylettersareintheirown namesbycuttingapart

thelettersin theirnamesandcounting.Studentsgluetheirlettersonapieceof constructionpaper.Theythenglueona2"× 2"paperwith thenumberof letters in theirname.Havestudentslook attheirneighbor'sname.Ask,"Whohas the shortername,you oryourneighbor?"Theyshareresponseswith theclass, comparingeach others’names.Giveeach studentapaperstrip, which reads,“I have lettersin myname.”Studentswillcompletethesentencebywritingthe numberof lettersintheir name,andgluingthe sentenceontheirpage.Students canfinishtheirpagefortheclassbook by gluingonasnapshot of themselvesor drawingapictureof themselves.

Differentiation

Support

•Writetheirnameon1-inchgraphpaperwith aletterineach square.Don’t cut thelettersapartbuthold theirnameuptootherstocomparelengths. Putamarkoneach letterasyou saythenumberword.

Extensions

•Students’names,writtenonindividual strips,areplacedinabox.Have studentsdrawnames& count thenumberof letters.

•Students,inpairs, taketurnsrollingadie. Theylook forclassmates’names containingthesamenumberof lettersas indicatedonthedie.

•Studentswritetheirnameson1-inch grids/graphpaper,one letterper square.Theycut theirstripsandcomparewith classmates’namestrips.

•Readthestoryof Chrysanthemum,byKevinHenkes.Havestudentscount thenumberof lettersinChrysanthemum’sname& comparethe numberof lettersinhernametothe numberof lettersintheirnames.

ObservationofStudents

•Listenforaccuracyaseachstudentcountsthelettersinhisorhername.

•Usecompletednamepagestodetermineifstudentswereareableto writethenumberoflettersintheirnames.

QuestionstoGuideStudentThinking

•Lookatnamesofstudentsinourclass.Whatis differentabout

everyone'sname?

•Howdidyoufindoutwhatnumberyouneededtowriteyoursentence?

•Isyournamelongerorshorterthanyourneighbor'sname?

•Ifwearrangeourclassbookfromshortestnametothelongestname, whosenamewouldbefirst?

•Showstudentsthepagesofthebook.“Ifthisisthefirstpagewhatwould thenextpagebe?”

Misconceptions

Studentsmaynotunderstandthatwhentheyarecountingthelastnumber theysayindicateshowmanyitems(inthiscaseletters)areinthegroup

Taskcreatedby:DeeannaD.Golden Adaptedfrom:

Mathematics:OperationsandAlgebraicThinking

ClusterHeading:Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastakingapartandtakingfrom.

K.OA.3

SnapIt

ContentStandard:Decomposenumberslessthanorequalto10intopairsinmorethanoneway,e.g.,byusingobjectsordrawings,andrecord eachdecompositionbya drawingorequation(e.g.,5=2 +3 and5=4 +1).

PracticeStandards:MP1 Makesenseofproblemsandpersevereinsolvingthem,MP5Useappropriatetoolsstrategically.

Problem/TaskSuggestionFormativeAssessmentSuggestions

ObservationsofStudents

Askeachstudenttocountout10unifixcubesandsnapthemtogetherina train.Whilestandingina circle,studentsholdtheirunifixcubesbehindtheir backs.Whentheteacher/designatedstudentsays“SnapIt”,studentsbreak theirtrainsintotwoparts.Studentsbringonepartineachhandaroundtothe frontoftheirbodiesforalltosee.Eachchildreportsonthecombinationof

tenbysaying,e.g.,4 plus6 =10.

Differentiation

Support

•Havethestudentsstartwith2-9unifixcubesinsteadof10.

Extension

•Havechildrenrevealwhatisinoneoftheirhandsbutkeeptheother behindtheirback.Otherstudentstrytofigureoutwhatisinthehand behindtheback.

•Writeequationsbasedonthecombinationstheymake.

•PlayTensGoFishcardgame.Havestudentslookforpairsofnumbersthat equal10.If a childhasa7 intheirhandtheyaskapartner“Doyouhavea

3?”Thiswillworklikeatraditional“GoFish”cardgame.

Solution

•Eachchildreportsonthecombinationoften.

Isthestudentableto:

•Makecombinationpairsforagivennumber?

•Findthemissingnumberfromthepair?

•Representthepairinmaterials?

QuestionstoGuideStudentWork

•Whathappenstothetencubeswhenyousnapthem?

•Istheremorethanonewaytosnapyourtrain?

•Whatmustthetwopiecesofthetraintotal?

Misconceptions

•Believethatthereisonlyonetobreakupten.

•Believethattheymustbreakitinhalf.

•Believethatafterthebreakthereis nolongera totaloften.

Vocabulary

Sum,equal,addition,adding,subtraction

Adaptedby:JoanBarrettfromthefollowingresources:“Snap-It”activityfromKathyRichardson’sDevelopingNumberConceptsBookOne:Counting,Comparing byKathyRichardson;DaleSeymourPublicationsCompiledApr1,1998;TensGoFish–InvestigationsinNumberDataandSpacegrade1,TERC2012