Occurrence of Endocrine-disrupting Phenols and Estrogens in Water and Sediment of the Songhua River, Northeastern China

Zifeng Zhang,a,c Nanqi Ren,a Kurunthachalam Kannan,a, b Jun Nana, Liyan Liua, Wanli Maa, *Hong Qi,a *Yifan Lia, c

aInternational Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China;

bWadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, USA;

cScience and Technology Branch, Environment Canada, Toronto, Ontario, M3H 5T4 Canada;

Supporting Information

1. Sampling sites

Figure SI-1: Locations of sample sites in study area in Songhua River and its tributaries. Twenty-six water samples and 25 sediment samples from the 13 sites were collected.

Table SI-0. Description of the sampling sites

River / Code1 / City / longitude / latitude
Songhua River / SR01 / Zhaoyuan / 125.0562 / 45.4876
Songhua River / SR02 / Harbin-1 / 126.4773 / 45.7417
Songhua River / SR03 / Harbin-2 / 126.5290 / 45.7620
Songhua River / SR04 / Harbin-3 / 126.6965 / 45.8133
Songhua River / SR05 / Harbin-4 / 126.6155 / 45.7809
Songhua River / SR06 / Harbin-5 / 126.5799 / 45.757
Songhua River / SR07 / Harbin-6 / 126.6498 / 45.7967
Songhua River / SR08 / Mulan / 128.0602 / 45.9353
Songhua River / SR09 / Tonghe / 128.7934 / 45.9942
Songhua River / SR10 / Yilan-1 / 129.4285 / 46.2857
Songhua River / SR11 / Yilan-2 / 129.5734 / 46.3856
Songhua River / SR12 / Jiamusi-1 / 130.2297 / 46.8104
Songhua River / SR13 / Jiamusi-2 / 130.4168 / 46.8437
Songhua River / SR14 / Fujin / 132.0200 / 47.3180
Songhua River / SR15 / Tongjiang / 132.5231 / 47.7015
Heilong River / HR01 / Heilong-01 / 132.3257 / 47.7300
Heilong River / HR02 / Heilong-02 / 132.6290 / 47.8070
Nen River / NR01 / Nengjiang / 125.1717 / 49.1698
Nen River / NR02 / Qiqihar-1 / 123.9872 / 47.4301
Nen River / NR03 / Qiqihar-2 / 123.8713 / 47.2646
Nen River / NR04 / Da'an / 124.348 / 45.4829
Second Songhua River / SS01 / Jilin-1 / 126.6190 / 43.7947
Second Songhua River / SS02 / Jilin-2 / 126.4791 / 43.9911
Second Songhua River / SS03 / Taolaizhao / 125.9066 / 44.7888
Second Songhua River / SS04 / Songyuan / 124.7906 / 45.1658
Mudan River / MR01 / Yilan_Mudan / 129.6392 / 46.2766

Table SI-1: Retention time and selected ions of target compounds

Compound / Molecular weight / Retention time (min) / Primary ion (m/z) / Secondary ions (m/z)
4-n-NP
4-t-NP / 220
220 / 10.75
10.21-11.03 / 261
207 / 159
221
4-t-OP / 206 / 13.65 / 179 / 292
NP1EO / 264 / 16.12-17.28 / 237 / 251; 265
BPA / 228 / 18.90 / 357 / 358
DES / 268 / 22.27 / 412 / 413; 397
NP2EO / 308 / 22.49-24.26 / 309 / 295
E2 / 272 / 30.98 / 416 / 285
E1 / 270 / 33.62 / 342 / 257
EE2 / 296 / 33.86 / 425 / 285; 440
E3 / 288 / 34.60 / 345 / 504; 129
Pyrene-d10 (internal standard) / 203 / 22.60 / 212

Table SI-2: Average concentration of natural and synthetic EDCs in surface water from different locations (ng L-1, avg ± SD)

Locations / OP / NP / NP1EO / NP2EO / BPA / DES / EE2 / E1 / E2 / E3
Venice lagoon, Italy (Pojana et al. 2007) / - / 167.8±52.9 / - / - / 48.5±32.2 / - / 23.5±2.1 / BDL / 13.2±2.3 / -
Yeongsan and Seomjin Rivers, Korea (Duong et al. 2010) / 0.2±0.01 / 163.5±20.1 / - / - / 4.3±1.9 / - / ND. / 14.7±3.6 / 4.3±1.1 / -
Danube River, Germany (Kuch et al. 2001) / 7.3±52 / 32±72 / - / - / 4.7±81 / - / 0.6±70 / 0.7±125 / 0.6±34 / -
Schelde River, Belgian (Loos et al. 2007) / BDL / 2500±500 / 310±260 / 320±180 / 38±6 / - / - / - / - / -
Fenhe River, China (Duong et al. 2010) / 2.6±1.1 / 318.6±40.6 / - / - / 2.4±0.5 / - / 21.8±2.4 / 5±1.2 / 8.8±1.1 / -
Songhua River (this study) / 6.5±8.6 / 188.6±68.7 / 50.0±71.5 / 49.9±56.1 / 52.0±60.3 / 0.2±0.4 / BDL / 4.2±4.0 / BDL / 0.8±2.4

E1=estrogen, E2=β-estradiol, E3=estriol, EE2=17α-ethynylestradiol, DES =diethylstilbestrol, OP =4-tert-octyphenol, NP =4-t-nonylphenol + 4-n-nonylphenol, NP1EO and NP2EO =nonylphenol mono- to di-ethoxylates, BPA= bisphenol A.

BDL= Below Detection Limit


Table SI-3: Average concentration of natural and synthetic EDCs in sediment samples from different locations (ng g-1 dry weight, avg ± SD)

Locations / OP / NP / NP1EO / NP2EO / BPA / DES / EE2 / E1 / E2 / E3
Xiamen Bay, China (Zhang et al. 2009) / 11.4±8.3 / 347.4±454.9 / - / - / 29.0±30.5 / 4.7±2.2 / 0.4±0.6 / 4.1±2.5 / 1.1±0.6 / -
Venice lagoon, Italy (Pojana et al. 2007) / - / 88.9±46.5 / - / - / 44.6±43.9 / 20.4±26.6 / 11±17.2 / - / - / -
Pearl River, China (Chen et al. 2006) / - / 365.7±258.7 / - / - / 2.8±1.9 / - / BDL / BDL / BDL / BDL
Yeongsan River, Korea (Isobe et al. 2006) / 5.7±3.6 / 214.0±108.7 / - / - / 97.0±84.3 / - / 3.5±3.8 / 32.9±16.4 / 17.2±5.4 / -
Songhua River (this study) / 0.6±0.4 / 31.3±22.9 / 17.8±33.9 / 17.2±18.6 / 4.9±3.2 / 0.03±0.08 / BDL / 0.5±0.7 / 0.1±0.3 / 0.04±0.2

E1=estrogen, E2=β-estradiol, E3=estriol, EE2=17α-ethynylestradiol, DES =diethylstilbestrol, OP =4-tert-octyphenol, NP =4-t-nonylphenol + 4-n-nonylphenol, NP1EO and NP2EO =nonylphenol mono- to di-ethoxylates, BPA= bisphenol A.

BDL= Below Detection Limit

Water-sediment exchange

The fugacity capacity (Z-value, mol/(m3Pa)) describes the potential of some material (air, water, soil) to retain a chemical. The Z-value for water is given by

Zw = 1/ KH(T)

/ (1)

where KH(T) is Henry’s Law constant ((Pa·m3)/mol), and T is temperature in K. By assuming that most of the chemicals are associated with the organic matter content of the sediment, the fugacity capacity is given by

Zse=ZwρseKsw

/ (2)

for sediment, where ρse is the density of the sediment (unit: g/ml), and Ksw is the sediment-water partition coefficient, which describes the equilibrium partitioning of a chemical between water and sediment, and is given by

Ksw = φSOC Koc

/ (3)

where, φSOC is the mass fraction of SOC (sediment organic carbon), and Koc is the organic carbon-water partition coefficient (unit: L/kg or mL/g).

The greater the value of Ksw for a particular chemical, the more strongly it will be retained by sediment. Furthermore, Ksw is proportional to SOC content and increases at colder temperatures, in-line with Koc.

The fugacity (f) is a measure of a chemical’s escaping tendency from a particular medium. In other words, chemicals tend to move from media where they have high fugacity to media where they have low fugacity. Fugacity is also the partial pressure (Pa) of a chemical in a particular medium. Fugacity is proportional to concentration and is defined as C/Z (where C is concentration, mol/m3), and given by

fw = Cw/Zw

/ (4)

fs= Cs/Zs = Cs/(ZwρseKsw)

/ (5)

for chemical concentrations in water (Cw) and sediment (Cs), respectively.

The fugacity fraction (ff) is used to assess equilibrium status of a chemical between two interacting phases, in this case sediment and water,

ff = fs/(fs + fw)
=( Cs/ρse Ksw)/(Cs/ρse Ksw + Cw)
=Cs/(Cs+ ρse Ksw Cw) / (6)

The unit for both Cs and Cw is ng ml-1, and

Cs (ng/ml) = C's (ng/g) ρs (g/ml)

we get

ff = Cs /(Cs +φSOC KocCw) / (7)

If we define the so called in situ carbon-water partition coefficient (also called as in situ carbon-normalized sediment-water partition coefficient) (K'oc) as:

K'oc= Cs /(Cw φSOC) / (8)

Eg. (7) becomes

ff = K'oc /( K'oc + Koc) / (9)

Values of ff equal to 0.5 indicate sediment–water equilibrium and no net gas exchange. Values >0.5 indicate net flux from sediment to water; values <0.5 indicate net sedimentation to sediment.