J. Thermal Analysis and Calorimetry. 2016

Supporting materials

Benchmarking Thermochemical Experiments and Calculations of Nitrogen Containing Substituted Adamantanes.

Vladimir N. Emel’yanenko,aRuslan N. Nagrimanov,b Sergey P. Verevkina,*

aDepartment of Physical Chemistry and Department „Science and Technology of Life, Light and Matter“, University of Rostock, Dr-Lorenz-Weg 1, D-18059, Rostock, Germany

bDepartment of Physical Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russia

Table S1Compilation of data on molar heat capacities (in J.K-1.mol-1) at 298.15 K of the adamantane derivatives

Compounds / (cr) a / -b / (liq)a / -b
adamantane / 188.6 [1] / 40.8 / 235.4 / 71.8
1-amino-adamantane / 266.4 [2] / 56.6 / 247.8 / 75.0
1-nitro-adamantane / 232.0 [3] / 49.8 / 250.8 / 75.8
2-nitro-adamantane / 233.8 [3] / 49.9 / 291.1 / 86.3
2,2-dinitro-adamantane / 244.3 [3] / 52.1 / 304.1 / 89.6
1-cyano-adamantane / 218.6 [4] / 46.7 / 239.9 / 73.0
2-cyano-adamantane / 215.3 / 46.0 / 280.2 / 83.4
2-cyano-2-nitro-adamantane / 230.9 [3] / 49.2 / 293.2 / 86.8
1-adamantanecarboxamide / 220.5 [5] / 47.1 / 233.2 / 71.2
1-adamantanecarboxamide, N,N-dimethyl / 257.1 [6] / 54.7 / 344.4 / 100.5

a Calculated according to the procedure developed by Chickoset al. [7,8] but some increments were adjusted for adamantane derivatives, as described in [9]

Temperature adjustment of fusion enthalpies

Generally, the experimental molar enthalpy of fusion is referred to the melting temperature Tfus. The measured enthalpies of fusion have to be adjusted to the reference temperature T = 298.15 K. The adjustment was calculated from the following equation,taken from literature [7,8]:

(298 K) /(J·mol-1) = (Tfus/K) - ( - )×[(Tfus/K) - 298 K]

whereand are the differences of the isobaric molar heat capacities (given in Table S1). With this adjustment the standard molar enthalpies of fusion, (298 K), were calculated (see Table 4).

Table S2Auxiliary thermochemical data at T = 298.15 K (p° = 0.1 MPa) (in kJ·mol-1)

Compound / (g)
exp [10] / (g)
G4(AT)
iso-Pr-R
iso-propyl amine / -83.8±0.6 / -
2-nitropropane / -140.7±0.6 / -145.1
2-methyl-propanenitrile / 23.3±1.3 / -
2-methyl-propaneamide / -282.6±0.9 / -277.7
N,N,2-trimethylpropaneamide / - / -258.1
tert-Bu-R
tert-butylamine / -120.9±0.7 / -
2-methyl-2-nitropropane / -175.6±1.4 / -181.2
2,2-dimethyl-propanenitrile / -2.5±0.8 / 6.7
2,2-dimethyl-propaneamide / -313.1±1.4 / -312.2
N,N,N,2-tetramethylpropaneamide / -286.1±2.1 / -285.3
cyclohexyl-R
amino-cyclohexane / -103.8±1.3 [11] / -
nitro-cyclohexane / -159.3±0.7 [12] / -164.4
cyano-cyclohexane / 4.8±0.7 / 6.2
cyclohexanecarboxamide / - / -303.1
N,N-dimethyl-cyclohexanecarboxamide / - / -295.1
1,1-dinitro-cyclohexane / - / -173.0
1-cyano-1-nitro-cyclohexane / - / -3.5

References

1. Bazyleva AB, Blokhin AV, Kabo GJ, Charapennikau MB, Emel’yanenko VN, Verevkin SP, Diky V. Thermodynamic properties of adamantane revisited. J Phys Chem B. 2011;115(33):10064–2.

2.Bazyleva AB, Blokhin AV, Kabo AG, Kabo GJ, Emel'yanenko VN, Verevkin SP. Thermodynamic properties of 1-aminoadamantane. J ChemThermodyn. 2008;40(3):509–522.

3. Fritzsche K, Dogan B, Beckhaus HD, Ruechardt C. Geminal substituents effect. Part I. Thermochemistry of 1-nitro-, 2-nitro-, 2,2-dinitro- and 2-cyano-2-nitroadamantane. ThermochimActa. 1990;160:147–59.

4. Abboud J-LM, Jimenez P, Roux MV, Turrion C, Lopez-Mardomingo C. Structural effects on the thermochemical properties of organic compounds. III. Enthalpies of combustion,vapour pressures and enthalpies of sublimation, and standard enthalpies of formation in the gaseous phase, of adamantane-1-carboxylic acid methyl ester and of adamantane-1-carbonitrile. J ChemThermodyn. 1992;24(12):1299–04.

5. Abboud J-LM, Jimenez P, Roux MV, Turrion C, Lopez-Mardomingo C. Structural effects on the thermochemical properties of carbonyl compounds. I. Enthalpies of combustion, vapour pressures and enthalpies of sublimation, and enthalpies of formation of 2-methylpropanamide, 2,2-dimethylpropanamide, and 1-adamantyl carboxamide. J ChemThermodyn. 1989;21(8):859–65.

6. Abboud J-LM, Jimenez P, Roux MV, Turrion C, Lopez-Mardomingo C, Podosenin A, Rogers DW, Liebman JF. Interrelations of the energetics of amides and alkenes: enthalpies of formation of N,N-dimethyl dertivatives of pivalamide, 1-adamantylcarboxamide and benzamide, and of styrene and its a-, trans-β- and β,β-methylated derivates. J Phys Org Chem. 1995;8(1):15–25.

7.Chickos JS, Acree WE, Jr. Enthalpies of sublimation of organic and organometallic compounds. 1910-2001. J PhysChemRef Data. 2002;31(2):537–698.

8.Chickos JS, Hosseini S, Hesse DG, Liebman JF. Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids. Struct Chem. 1993;4(4):271–7.

9.Nagrimanov RN, Solomonov BN, Emel’yanenko VN, Verevkin SP. Six-membered ring aliphatic compounds: structure-property relationships in phase transitions, ThermochimActa. 2016;(TCA-S-16-00073).

10.Pedley JB. Thermochemical data of organic compounds. Thermodynamics Research Center (TRC). College Station. Texas. 1994.

11.Verevkin SP, Emel´yanenko VN.Thermodynamic properties of cyclohexanamines: experimental and theoretical study. ThermochimActa. 2015;608:40-48.

12.Verevkin SP. Thermochemistry of nitro compounds. Experimental standard enthalpies of formation and improved group-additivity values.ThermochimActa. 1997;307(1):17-25.