YU-ISSN 0352-5139

J.Serb.Chem.Soc. Vol 68, No 1 (2003)

CONTENTS

Organic Chemistry and Biochemistry

R. Markovi}, A. Shirazi, Z. D`ambaski, M. Baranac and D. Mini}: Hydrogen bonding in push-pull 5-substituted-2-alkylidene-4-oxothiazolidines: 1H-MNR spectroscopic study

1

N. C. Nikoli} and M. Z. Stankovi}: Kinetics of solanidine hydrolytic extraction from potato (Solanum tuberosum L) haulm solid-liquid systems

9

D. T. Veli~kovi}, N. V. Randjelovi}, M. S. Risti}, A. S. Veli~kovi} and A. [melcerovi}: Chemical constituents and antimicrobial activity of the ethanol extracts obtained from the flower, leaf and stem of Salvia officinalis L.

17

N. Toma{evi}, M. Nikoli}, K. Klappe, D. Hoekstra and V. Niketi}: Insulin-induced lipid binding to hemoglobin

25

Physical Chemistry

M. Lj. Kijev~anin, A. B. Djordjevi}, I. R. Grguri}, B. D. Djordjevi} and S. P. [erbanovi}: Simultaneous correlation of the excess enthalpy and W-shaped excess heat capacity of 1,4-dioxane-n-alkane systems by PRSV-HVOS CEOS

35

I. R. Grguri}, M. Lj. Kijev~anin, B. D. Djordjevi}, A. @. Tasi} and S. P. [erbanovi}: Excess molar volume of acetonitrile + alcohol systems at 298.15 K. Part II: Correlation by cubic equation of state

47

M. M. A~anski, S. Jovanovi}-[anta and L. R. Jevri}: Normal and reversed phase thin-layer chromatography of new 16,17-secoestrone derivatives

57

Analtytical Chemistry

R. P. Mihajlovi}, N. R. Ignjatovi}, M. R. Todorovi}, I. Holclajtner-Antunovi} and V. M. Kaljevi}: Spectrophotometric determination of phosphorus in coal and coal ash using bismuth-phosphomobybdate complex

65

J.Serb.Chem.Soc. 68(1)1–7(2003)

UDC 541.11.027+547.313:543.422.25

JSCS – 3014

Original scientific paper

Hydrogen bonding in push-pull 5-substituted-2-alkylidene-4-oxothiazolidines: 1H-NMR spectroscopic study

R. MARKOVI]a,b, A. SHIRAZIc, Z. D@AMBASKIb#, M. BARANACa,b and D. MINI]d

aFaculty of Chemistry, University of Belgrade, Studentski trg 16, P. O. Box 158, YU-11001 Belgrade, bCenter for Chemistry ICTM, P. O. Box 815, YU-11000 Belgrade, cChemistry Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA and dFaculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P. O. Box 137, YU-11001 Belgrade, Yugoslavia

(Received 7 March, revised 24 September 2002)

Abstract: Application of dynamic 1H-NMR spectroscopy added to the understanding of the hydrogen bonds existing in the structurally related 5-substituted-2-alkylidene-4-oxothiazolidines in polar and apolar solvents. The equilibrated mixtures of these typical push-pull alkenes in CDCl3 consist of the intramolecularly H-bonded (E)-isomer and intermolecularly H-bonded (Z)-isomer in varying proportions which depend on the solvent polarity. For the representative of the series, (Z)-2-(5-ethoxycarbonylmethyl-4-oxothiazolidin-2-ylidene)-1-phenylethanone, a concentration effect on the degree of intermolecular hydrogen bonding in apolar CDCl3 has been studied.

Keywords: push-pull alkenes, hydrogen bonding, 1H-NMR spectroscopy.

REFERENCES

1. R. Markovi}, M. Baranac, J. Serb. Chem. Soc. 63 (1998) 165

2. R. Markovi}, M. Baranac, Heterocycles 48 (1998) 893

3. R. Markovi}, M. Baranac, Synlett (2000) 607

4. R. Markovi}, Z. D`ambaski, M. Baranac, Tetrahedron 57 (2001) 5833

5. S. Rajappa, Tetrahedron 55 (1999) 7065

6. S. P. Singh, S. S. Parmar, K. Raman, V. I. Stenberg, Chem. Rev. 81 (1981) 175

7. J. Sandström, J. Top. Stereochem. 14 (1983) 83

8. J-M. Lehn, Angew. Chem. Int. Ed. Engl. 29 (1990) 1304 and references therein

9. Manuscript in preparation

10. O. Ceder, U. Stenhede, K.-I. Dahlquist, J. M. Waisvisz, M. G. van der Hoeven, Acta Chem. Scand. 27 (1973) 1914

11. L. Forlani, E. Mezzina, C. Boga, M. Forconi, Eur. J. Org. Chem. (2001) 2779

12. E. Kleinpeter, A. Koch, M. Heydenreich, S. K. Chatterjee, W.-D. Rudorf, J. Mol. Sruct. 356 (1995) 25

13. A. Gómez-Sánchez, R. Paredes-León, J. Cámpora, Magn. Reson. Chem. 36 (1998) 154

14. J.-C. Zhuo, Magn. Reson. Chem. 35 (1997) 311

15. J. L. Chiara, A. Gómez-Sánchez, J. Bellanato, J. Chem. Soc. Perkin Trans. 2 (1998) 1797

16. E. Sánchez Marcos, J. J. Maraver, J. L. Chiara, A. Gómez-Sánchez, J. Chem. Soc. Perkin Trans. 2 (1998) 2059

17. E. M. Schulman, D. W. Dwyer, D. C. Doetschman, J. Phys. Chem. 94 (1990) 7308.

J.Serb.Chem.Soc. 68(1)9–16(2003)

UDC 633.491:531.3+66.01+66.094.941

JSCS – 3015

Original scientific paper

Kinetics of solanidine hydrolytic extraction from potato (Solanum tuberosum L.) haulm in solid-liquid systems

NADA ^. NIKOLI] and MIHAJLO Z. STANKOVI]

Faculty of Technology, University of Ni{, Bulevar oslobodjenja 124, 16000 Leskovac, Yugoslavia

(Received 11 July, revised 19 September 2002)

Abstract: Dried and milled haulm of potato (Solanum tuberosum L.) was used as the solid phase. An ethanolic solution of hydrochloric acid mixed with chloroform in different volume ratios was the liquid phase. The aim of paper was to unite in a single step the processes of glycoalkaloids extraction from haulm, their hydrolysis to solanidine and the extraction of solanidine. This could make the procedure of obtaining solanidine faster and simpler. The best degree of solanidine hydrolytic extraction of 84.5 % was achieved using 10 % w/v hydrochloric acid in 96 % vol. ethanol mixed with chloroform in a volume ratio of 2:3, after 120 min of hydrolytic extraction.

Keywords: potato, haulm, glycoalkaloids, hydrolysis, solanidine, extraction.

REFERENCES

1. G. Percival, G. R. Dixon, J. Sci. Food Agric. 70 (1996) 439

2. K. Scrieber, in The alkaloids, Manske, R.H.F. (Ed.) Academic Press: New York Vol. X, 1968, p. 19

3. M. B. F. Dale, D. W. Griffiths, H. Bain, D. Todd, Ann. Appl. Biol. 123 (1993) 411

4. T. C. Cronk, G. D. Kuhn, F. J. McArdel, Bull. Environ. Contam. Toxicol. 11 (1974) 163

5. O. V. Pogorelova, Farm. 4 (1968) 27

6. L. Fieser, M. Fieser, Steroids, Reinhold Publ. Corp. New York, Amsterdam, London (1967) p. 234

7. J. A. Maga, CRC Crit. Rev. Food Sci. Nutr. 12 (1980) 371

8. R. Kuhn, I. Low, Chem. Ber. 88 (1955) 289

9. R. Kuhn, I. Low, Chem. Ber. 20 (1954) 639

10. K. T. Penov-Ga{i, E. A. Djurendi}, D. Rackovi}-^oli}, M. N. Sakc, O. N. Arcson, Lj. Medi}-Mija~evi}, D. A. Miljkovi}, J. Serb. Chem. Soc. 62 (1997) 451

11. D. T. Coxon, K. R. Price, P. G. Jones, J. Sci. Food Agric. 30 (1979) 1043

12. J. Briner, J. Pharmac. Sci. 58 (1969) 258

13. E. A. Tukalo, G. N. Tsarik, Biolog. nauki 12 (1970) 115

14. K. M. Ga{i, Z. O. Saka~, D. M. Rackov, D. S. Rausavljevi}, Review of Research, Faculty of Science - University of Novi Sad 14 (1984) 5

15. M. Z. Stankovi}, N. C. Nikoli}, R. Pali}, M. D. Caki}, V. B. Veljkovi}, Potato Res. 37 (1994) 271

16. W. M. Gelder, J. Agric. Food Chem. 35 (1984) 487.

J.Serb.Chem.Soc. 68(1)17–24(2003)

UDC 615.281:635.74+547.262

JSCS – 3016

Original scientific paper

Chemical constituents and antimicrobial activity of the
ethanol extracts obtained from the flower, leaf and stem of Salvia officinalis L.

DRAGAN T. VELI^KOVI]*1, NOVICA V. RANDJELOVI]2, MIHAILO S. RISTI]3, ANA S. VELI^KOVI]4 and ANDRIJA A. [MELCEROVI]5

*1AD “Zdravlje” Pharmaceutical and Chemical Industry, Vlajkova St. 199, YU-16000 Leskovac, 2Faculty of Technology, Bulevar Oslobodjenja St. 124, YU-16000 Leskovac, 3Institute for Medicinal Plants Research “Dr. Josif Pan~i}”, Tadeu{a Ko{}u{ka St. 1, YU-11000 Belgrade, 4Medical Center “Mo{a Pijade”, Department of General Practice, Rade Kon~ara St. 2, YU-16000 Leskovac and 5Chemical Industry “Nevena”, Djordja Stamenkovi}a St. bb., YU-16000 Leskovac, Yugoslavia

(Received 19 August 2002)

Abstract: In this paper a comparison of the chemical composition and antimicrobial action of the ethanol extracts from the flower, leaf and stem of the herbal species Salvia officinalis L. (Lamiaceae), originating from the southeast region of Serbia was carried out. The chemical composition of the extracts was determined by GC-FID and GC-MS analyses. Manool has the highest level of all the components (9.0–11.1 %). Antimicrobial activity was determined by the diffusion and dilution method, whereby the latter one was modified by use of cellulose discs, and it was applied for the determination of the minimal inhibitory (MIC) and minimal lethal concentrations (MLC). The leaf extract has a stronger antimicrobial activity than those of the flower and stem.

Keywords: Salvia officinalis L., Lamiaceae, extracts composition, manool, antimicrobial activity.

REFERENCES

1. I. C. Hedge, in Advances in Labiate Science (R. Harley, T. Reynolsd Eds.), Roy. Bot. Gard., Kew., UK 1992, p. 85

2. N. Dikli}, in Flora of Serbia VI, M. Josifovi}, Ed., SANU, Belgrade 1974, p. 432

3. F. I. Jean, G. J. Collin, D. Lord, Perfurm. Flavor. 17 (1992) 35

4. R. Länger, Ch. Mechtler, J. Jurenitsch, Phytochem. Anal. 7 (1996) 289

5. E. Reverchon, R. Taddeo, G. Della Porta, J. Suprcrit. Fluids 8 (1995) 302

6. J. B. Hinou, C. E. Harvala, E. B. Hinou, Pharm. 44 (1989) 302

7. A. Pauli, K. Knobloch, Z. Lebensm. Unters. Forsch. 185 (1987) 10

8.V. N. Dobrynin, M. N. Kolosov, B. K. Chernov, N. A. Derbentseva, Khim. Prir. Soedin. (1976) 868

9. Pharmacopeia Jugoslavica, 4th ed., Federal Institute for Health Care, Belgrade 1991

10. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/quadrupole Mass Spectroscopy, Allured Publ. Corp., Carol Stream, Illinois 2001

11. R. P. Adams, Identification of Essential Oil Components by GC/MS, Allured Publ. Corp., Carol Stream, Illinois 1995

12. Anonymous, Draft International Standard ISO/DIS 11024-1.2/2.2, Essential oils - General guidance on chromatographic profiles, International Organization for Standardization, Geneva 1997

13. B. M. Lawrence, Perfum. Flavor. 23 (1998) 47

14. D. Veli~kovi}, M. Risti}, N. Randjelovi}, A. [melcerovi}, J. Essent. Oil Res. 14 (2002) 453

15. D. Veli~kovi}, M. Risti}, A. Veli~kovi}, Lek. Sirov. 21 (2001) 51.

J.Sereb.Chem.Soc. 68(1)25–33(2003)

UDC 612.349.8:611.018.5+612.111:616.379–008.61

JSCS – 3017

Original scientific paper

Insulin-induced lipid binding to hemoglobin

NENAD TOMA[EVI]1, MILAN NIKOLI]1, KAREN KLAPPE2, DICK HOEKSTRA2 and
VESNA NIKETI]1

1Chemistry Department, University of Belgrade, Studentski trg 16, P. O. Box 158, YU-11001 Belgrade, Yugoslavia and 2Laboratory of Physiological Chemistry, University of Groningen, Bloemsingel 10, 9712 KZ Groningen, The Netherlands

(Received 22 July 2002)

Abstract: Under hypoglycemic conditions, concomitant hyperinsulinism causes an apparent modification of hemoglobin (Hb) which is manifested by its aggregation (Niketi} et al., Clin. Chim. Acta 197 (1991) 47). In the present work the causes and mechanisms underlying this Hb modification were studied. Hemoglobin isolated from normal erythrocytes incubated with insulin was analyzed by applying 31P-spectrometry and lipid extraction and analysis. To study the dynamics of the plasma membrane during hyperinsulinism, a fluorescent lipid-analog was applied. In the presence of insulin, phosphatidylserine (PS), phosphatidylethanolamine (PE) and cholesterol were found to bind to Hb. Lipid binding resulted in Hb aggregation, a condition that can be reproduced when phospholipids are incubated with Hb in vitro. Using a fluorescent lipid-analog, it was also shown that exposing erythrocytes to supraphysiological concentrations of insulin in vitro resulted in the internalization of lipids. The results presented in this work may have relevance to cases of diabetes mellitus and hypoglycemia.

Keywords: insulin, erythrocyte, hypoglycemia, hyperinsulinism, membrane lipids, hemoglobin.

REFERENCES

1. K. K. Gambhir, J. A. Archer, C. J. Bradley, Diabetes 27 (1978) 701

2. B. L. Wajchenberg, A. C. Lerario, Hormone Metab. Res. 20 (1988) 133

3. V. Niketi}, V. Djurdji}, V. Stojkovi}, S. Mari}, P. Djordjevi}, Clin. Chim. Acta 180 (1989) 121

4. V. Niketi}, S. Mari}, A. Dikli}, S. Ne{kovi}, N. Toma{evi}, Clin. Chim. Acta 197 (1991) 47

5. V. Niketi}, N. Toma{evi}, M. Nikoli}, Biochem. Biophys. Res. Commun. 239 (1997) 435

6. J. W. Kok, S. Eskelinen, K. Hoekstra, D. Hoekstra, Proc. Natl. Acad. Sci. USA 86 (1989) 9896

7. J. W. Kok, M. ter Beest, G. Scherphof, D. Hoekstra, Eur. J. Cell Biol. 53 (1990) 173

8. H. F. Bunn, Am. J. Hematol. 42 (1993) 112

9. L. Tentori, A. M. Salveti, Meth. Enzymol. 76 (1981) 707

10. M. Kundu, J. Basu, P. Chakrabarti, M. M. Rakshit, Biochem. J. 258 (1989) 903

11. E. G. Bligh, W. J. Dyer, Canad. J. Biochem. Physiol. 37 (1959) 911

12. C. J. F. Bottcher, C. M. van Gent, C. Pries, Anal. Chim. Acta 24 (1961) 203

13. N. Sotirhos, B. Herslof, L. Kenne, J. Lipid Res. 27 (1986) 386

14. E. London, G. W. Feigenson, J. Lipid Res. 20 (1979) 408

15. D. Marsh, FEBS Lett. 268 (1990) 371

16. T. Cserhati, M. Szogyi, Int. J. Biohem. 23 (1991) 131

17. S. W. Peterson, R. S. Kelleher, A. L. Miller, E. F. Murray, J. Biol. Chem. 258 (1983) 9605

18. J. S. Owen, K. R. Bruckdorfer, R. C. Day, N. McIntyre, J. Lipid. Res. 23 (1982) 124

19. R. S. Kelleher, E. F. Murray, S. W. Peterson, Biochem. J. 241 (1987) 93

20. K. H. Hahn, H. Kim, J. Biochem. (Tokyo) 110 (1991) 635

21. I. Szundi, J. G. Szelenyi, J. H. Breuer, A. Berczi, Biochim. Biophys. Acta 595 (1980) 41

22. J. Szebeni, E. E. Di Iorio, H. Hauser, K. H. Winterhalter, Biochemistry 24 (1985) 2827

23. E. Marva, R. P. Hebbel, Blood 83 (1994) 242

24. J. Szebeni, H. Hauser, C. D. Eskelson, R. R. Watson, K. H. Winterhalter, Biochemistry 27 (1988) 6425

25. C. C. LaBrake, L. W. Fung, J. Biol. Chem. 267 (1992) 16703

26. J. Szebeni, K. Toth, Biochim. Biophys. Acta 857 (1986) 139

27. T. Ito, M. Nakano, Y. Yamamoto, T. Hiramitsu, Y. Mizuno, Arch. Biochem. Bioiphys. 316 (1995) 864

28. J. V. Santiago, N. H. White, D. A. Skor, L. A. Levandoski, D. M. Bier, P. E. Cryer, Am. J. Physiol. 247 (1984) 215

29. P. M. Abuja, R. Albertini, Clin. Chim. Acta 306 (2001) 1

30. C. R. Kiefer, L. M. Snyder, Curr. Opin. Hematol. 7 (2000) 113.

J.Serb.Chem.Soc. 68(1)35–46(2003)

UDC 541.21+547.94:536.722

JSCS – 3018

Original scientific paper

Simultaneous correlation of the excess enthalpy and W-shaped excess heat capacity of 1,4-dioxane+n-alkane
systems by PRSV-HVOS CEOS

MIRJANA LJ. KIJEV^ANIN#, ALEKSANDAR B. DJORDJEVI], IVONA R. GRGURI]#, BOJAN D. DJORDJEVI]# and SLOBODAN P. [ERBANOVI]

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P. O. Box 35-03, Belgrade, Yugoslavia

(Received 9 September 2002)

Abstract: In this work the Peng-Robinson-Stryjek-Vera (PRSV) equation of state coupled with the Huron-Vidal-Orbey-Sandler (HVOS) rule was tested for the correlation of the excess enthalpy (HE) and the excess heat capacity (cpE) alone and simultaneously. The HVOS mixing rule incorporates the NRTL equation as the GE model. All calculations were performed using the linear and reciprocal forms of the temperature dependent parameters of the models. For all the evaluations the 1,4-dioxane+n-alkane systems were chosen having in mind the unusually W-shaped concentration dependence of cpE for these systems. The correlation of the HE and cpE data alone for all the investigated systems using four coefficients and for the simultaneous correlation of HE+cpE data using six coefficients of the temperature dependent parameters of the PRSV-HVOS models could be considered as being very satisfactory.