Instructional Video forEnhancing Student Learning
Background and Problem Identification
This Teaching Intervention focuses on the introduction of instructional videos to a Level 2 Physical Geography laboratory component “Physical Analysis of Natural Materials”. This component was taught simultaneously between two similar, but independent, Level 2 modules; Research Skills in Geography (for Geography BSc students) and Research Skills in Physical Geography (for Physical Geography BSc students). Typically, between 160 and 180 students (combined) are enrolled on this component, and are divided into five smaller groups. Each group has three practical classes during Semester 1, fortnightly (Figure 1), and as a consequence, includes up to 45 hours of teaching time in the laboratory. Additional preparatory lectures and summary sessions can increase this teaching load by a further 12 hours, without taking into account the component’s administration that is lengthy for the large cohort of students.
In previous years, this had been a team-taught component, but due to departmental staffing changes at the beginning of the 2013/14 Academic Year, I took on responsibility for delivering all taught sessions with the help of three technicians and one postgraduate demonstrator that were available during the laboratory practicals. Furthermore, instructional lectures (denoted P1, P2 and P3 in Figure 1) were unfavourably timetabled in the week previous to three of the laboratory practicals (P1a, P1b and so on), and two weeks prior to the remaining two laboratory slots. Consequently, students in Group E, for example, had a 13 day gap between receiving verbal instructions and conducting their experiments.
A longer-standing issue with this component reflects the naturally high cognitive load placed on students conducting experiments for the first time in a laboratory. In most instances, students have little experience operating in such an environment, and even less experience using the equipment and materials specific to the course. Coupled with this, laboratory work must be conducted precisely and accurately, following strict, sequential steps. Without prior knowledge of the environment, equipment and materials, being able to absorb and follow seemingly straightforward instructions becomes difficult, and often leads to uncertainties and errors during the laboratory practicals.
Traditionally, students were guided through the experiments in a one-hour preparatory session given before the laboratory practicals, with detailed written instructions also provided in the form of Laboratory Technical Leaflets. Yet despite this, students often struggled completing the laboratory practicals autonomously, or to a satisfactory standard with regards to the component’s learning outcomes.
Thus, the specific aims of this Teaching Intervention were to:
- Develop a more effective and efficient way of providing instructions to students.
- Improve the student’s meaningful learning through integrating instructional videos.
- Enhance the learning experience of students undertaking the practical classes.
Week 2 / Mon / Tues / Wed
Lecture 1 / Thurs / Fri
P1 / Sat / Sun
Week 3 / Mon / Tues
P1a / Wed
P1b / Thurs
P1c / Fri
/ Sat / Sun
Week 4 / Mon / Tues / Wed
P1d / Thurs
P1e / Fri
P2 / Sat / Sun
Week 5 / Mon / Tues
P2a / Wed
P2b / Thurs
P2c / Fri
/ Sat / Sun
Week 6 / Mon / Tues / Wed
P2d / Thurs
P2e / Fri
P3 / Sat / Sun
Week 7 / Mon / Tues
P3a / Wed
P3b / Thurs
P3c / Fri / Sat / Sun
Week 8 / Mon / Tues / Wed
P3d / Thurs
P3e / Fri / Sat / Sun
Week 9 / Mon / Tues / Wed
Lecture 2 / Thurs / Fri / Sat / Sun
Week 10 / Mon / Tues / Wed
Surgery / Thurs / Fri / Sat / Sun
Figure 1. Timetable for “Physical Analysis of Natural Materials” illustrating the gap between P1, P2 and P3, and the subsequent practicals (denoted P1a, P1b, P1b and so on).
Learning through Instructional Video
Video is a rich and powerful medium which can be used effectively to deliver instructions from a teacher to a learner without the need for one-to-one personal interaction, promoting proactive, unlimited and random access to learning and learning materials (Zhang et al., 2006). The associated benefits include: time and location flexibility; encouragement of self-directed and self-paced learning; promoting a collaborative learning environment, and; permitting students to view realistic situations and sequences in motion (Zhang et al., 2006). Furthermore, Hampapur and Jain (1998), Syed (2001) and Zhang et al. (2006) all noted that multimedia provides a multi-sensory learning environment that may improve the learner’s ability to retain key information, whilst Wetzel et al. (1994) commented on the positive impact of video instruction on a leaner’s interest in a particular subject.
There are, however, several counterarguments for using animation and video in a learning environment. In their study, Koroghlanian and Klein (2004) concluded that participants who received instructions via video animation rather than static illustrations and text, spent more time studying with no corresponding gains in terms of learning. Lowe (1999; 2003) similarly argued that this was largely a consequence of saliency within the animations that detracted from the subtle components of the instruction being given, whereas Mayer et al. (2001) argued that learning is inhibited where animation is used, as greater cognitive demand is required to process the information presented. As a consequence, a swathe of research has been conducted on video instruction and the demands placed on the working memory and understanding cognitive load theory (CLT; see Table 1) (e.g. Mayer et al., 2001; Ploetzner and Lowe, 2004).
Table 1. Three categories of cognitive load theory and types of cognitive processing in multimedia learning. Sources: Paas et al. (2003), van Merrienboer and Paas (1998), van Merrienboer and Ayres (2005), Mayer and Moreno (2003).Intrinsic load/ Essential processing / The “natural” load placed by information needed to be acquired, consisting of interactive elements to be processed simultaneously in working memory to understand the information.
Extraneous load/ Incidental processing / The load imposed by the instructions themselves, governed by the instructional designer. Increases where nonessential information is presented.
Germane load/ Representational holding / Refers to the working memory resources required to acquire and understand the information (i.e. holding verbal or visual instruction in memory)
CLT essentially dictates that if the extraneous load is high, students’ learning will be impeded, and consequently, instructional design must be considered to limit the additional cognitive load placed on a learner. Not only is this governed by the quality of the information presented, but how the instructions are delivered (audio, pictures, text) and how they are received (ears, eyes). Mayer and Moreno (2003) and Ayres and Paas (2007) discussed the importance of reducing cognitive load, and indeed, the former suggested a number of alternative ways in which to do so including: using multi-sensory video animation (audio and animation); pretraining (giving advance instruction); segmenting (using clear steps in a clear sequence); weeding (presenting only necessary information), and; aligning and synchronising words and pictures. These were taken into account during instructional design.
Instructional Design for Laboratory Videos
A fundamental step in reducing extraneous cognitive load is through effective instructional design. In acknowledgement of the work of Mayer and Moreno (2003), and being conscious of the module’s delivery and learning outcomes, a set of criteria were considered during the design of each video (Table 2). Once suitable planned, videos were recorded in the laboratory using a plug-and-play FlipCam and edited using Microsoft’s Movie Maker.
Table 2. Instructional design considerationsCriterion / Rationale
Concisely formed / In order to minimise extraneous load, videos must be short (5-10 minutes), but not at the expense of meeting other criteria.
Well-paced / Each individual step in the exercise must be demonstrated at a suitable pace so that students can view the subtle processing steps. This will also show that experiments should not be rushed and there is time to complete the practical in a timely manner. Students must be able to pause and rewind the video.
Well-structured / The structure of the video must match that given in the written instructions and verbally in preparatory lectures.
Accessible / Each student must be able to access the videos. The videos must also be suitable to view on a range of devices.
Scientifically accurate / The correct processes, materials, equipment should be demonstrated, and portrayed using the correct terminology.
Promote a safe working environment / Videos must show the demonstrators adhering to strict health and safety guidelines.
The main issue associated with the instructional design of the videos was whether to complement the demonstrator’s actions with audible commentary or on-screen text captions. According to Mayer and Moreno (2003) and Ayres and Pass (2007), providing audio commentary (ears) to match the visual demonstration (eyes) will lead to more effective learning than providing both in the visual channel with onscreen text captions (eyes) and the visual demonstration (eyes). However, these studies referred to situations where video instruction was the only means of delivering information to students, whereas in this example, it was one of three ways.
Elsewhere, Hegarty and Just (1989) showed that learners are capable of reading short captions and integrating this information to the graphics. Moreno and Mayer (1999) also promoted this integrated presentation of video instruction, and found that students who have access to such instructional videos performed better on problem-solving tasks. As a result, to reduce cognitive load, spatial alignment of words and animation was used for the instruction videos. The associated benefit of this is that students could pause the video yet still receive instruction corresponding to the screenshot.
Finally, the videos were uploaded to Aberystwyth University’s Helix Media Library, encoded, and then added to the appropriate folder within the module’s Blackboard page. Each student was able to access the videos, and view them on a range of devices, including laptops, tablets and mobile phones.
Evaluation of Instructional Videos
At the end of the module, students were encouraged to complete a short questionnaire via a Google Poll regarding the instructional videos. In total, 56 students responded, which equates to roughly 1/3 of the class. Here, the results are analysed.
Of the 56 students who took the survey, 3% said that they had watched at least one video, 45% at least once per video, and 52% watched multiple videos, multiple times (Figure 2a). Thirty-one percent of the videos were watched on campus, with 55% watched at in the students’ homes (Figure 2b). Videos were watched on laptops (59%), desktops (18%), smartphones (18%) and tablets (10%)(Figure 2c), with some students even watching the videos as they were conducting the experiments (Figure 3).
Figure 2d shows how the videos were used the most, with students also commenting that the videos were beneficial because they provided “step-by-step instructions without being spoon fed”. Many students commented on how clear they made the practical, and how they “made it easier to remember” the information when it came to conducting the experiments. Students also commented on “the concise yet detailed” information, and how the videos made the laboratory sessions “more appealing” and “engaging”. In total, 97% of students agreed that the information presented was very good or detailed, with 3% agreeing that the information was sufficient (Figure 2e). One respondent commented that the videos had made the laboratory sessions more “accessible because of my dyslexia”.
When quizzed about their preferred method of receiving laboratory instruction, 5% opted for the verbal instructions given in the lecture and during the practical sessions, 32% preferred the written instructions in the technical leaflets, and 63% said that the videos were favoured (Figure 4). Eighty-five percent of students said that they felt they engaged with the laboratory work because of the videos (Figure 5), with 100% of those who provided answers saying that they either agreed or strongly agreed that the videos made the laboratory work more appealing and easier to understand (Figure 5). Several students also commented on the benefits of being able to “pause and rewind parts” that had been “misheard or not understood properly”. Finally, 81% of students reported that there had been an increase in their analytical skills after watching the videos, with 70% noticing an improvement in their numeracy and subject-specific skills (Figure 5).
Students appeared hesitant in critiquing the videos with most students either not providing a response or suggesting that they “could not be improved”. Several students, however, noted that when streaming the videos, if paused for a small amount of time (one minute), the videos reset to the beginning. This turned out to be a consequence of the Helix Media Library and was largely out of my, or their, control.
Figure 2.Summary of student’s responses regarding the use of instructional videos.
Figure 3.Level 2 students streaming an instructional video in the laboratory on an iPad.
Figure 4.Students’ preferred method of receiving instructions for the laboratory sessions.
Figure 5.Summary of student’s responses regarding the benefits of instructional videos.
Interpretation
The Teaching Intervention had three main aims that form the basis for a critique and discussion of the project.
1. Develop a more effective and efficient way of providing instructions to students
It is clear from the students’ feedback that the videos were effective in terms of receiving instructions. Many students acknowledged that they had used the videos to create their own personal step-by-step instructions, withothers using them to strengthen the instructions given on the technical leaflets and verbally in the preparatory lectures. Students, on the whole, preferred the videos to more traditional methods of receiving instructions, owing to their time and location flexibility. Certainly for those students with learning difficulties such as dyslexia, this form of instruction also proved to be more beneficial than traditional methods as they could match words with visuals.
From a teaching perspective, it was noted by the experienced laboratory technicians that far fewer basic questions were being asked, with more in-depth conversations taking place between staff and students. Indeed, it was also evident that fewer mistakes were made this year than any of the previous six (based on my experience of teaching on the module). This was seen as a positive as it increased the expedient contact time with students who wished to discuss the work in more detail, thus allowing deeper learning.
Improve the student’s meaningful learning through integrating instructional videos.
According to the students, the instructional videos helped improved their analytical, numeracy and subject-specific skills, suggesting that the videos provided more than just immediate instructions that were held in the working memory. Whilst difficult to quantify the ‘meaningful learning’ aspect, their final laboratory reports showed that, on average, grades were 4% higher than the previous two year’s cohorts. Furthermore, as noted above, our experiencedtechnicians and I noticed a significant decrease in basic errors being made throughout the course. Otherwise, only the students can critically assess the impact of the instructional videos on their meaningful learning.
Enhance the learning experience of students undertaking the practical classes.
From the students’ perspective, the instructional videos appeared to have made the experience of the laboratory practicals a positive one, with many noticing an improvement in their skills and engagement with the component. The lack of negativity towards the videos also suggests that they did indeed enhance the learning environment and experience of the students, and informal conversations with students recently (April 2014) highlighted that the component was one of the better academic courses that had been sat. The course was also Highly Commended at the 2014 Aberystwyth University’s Blackboard Exemplary Course Awards for its integration of technology to teaching.
Summary
This Teaching Intervention set out to integrate instructional videos into a Level 2 Physical Geography laboratory practical component in order to: develop a more effective and efficient way of providing instructions to students; improve their meaningful learning, and; enhance their learning experience. A detailed analysis of feedback suggests that each of the aims was achieved. Students acknowledged that instruction videos were the preferred way of receiving instructions, with the majority of those questioned also showing that they engaged with the laboratory work because of the videos, as they made the work more appealing. Whilst few comments were made concerning how the videos could be improved, it is evident that minor changes regarding how videos were streamed is required for future cohorts.
References
Ayres, P. and Paas, F. 2007. Making Instructional Animations More Effective: A Cognitive Load Approach. Applied Cognitive Psychology, 21, 695-700.
Hampapur, A. and Jain, R. 1998. Video Data Management Systems: Metadata and Architecture. In: Klas, W. and Sheth, A. (Eds). Multimedia Data Management.McGraw-Hill, New York.
Hegarty, M. and Just, M.A. 1989.Understanding Machines from Text and Diagrams.In:Mandl, H. and Levin, J.R. (Eds) Knowledge Acquisition from Text and Pictures. Elsevier.
Klein, J. and Koroghlanian, C. 2004. The Effect of Audio and Animation in Multimedia Instruction.Journal of Educational Multimedia and Hypermedia, 13 (1), 23-46.
Lowe, R.K. 1999. Extracting Information from an Animation during Complex Visual Learning.European Journal of Psychology of education, 14, 225-244.
Lowe, R.K. 2003. Animation and Learning: Selective Processing of Information in Dynamic Graphics. Learning and Instruction, 13, 157-176.
Mayer, R.E. and Moreno, R. 2003. Nine Ways to Reduce Cognitive Load in Multimedia Learning.Educational Psychologist, 38 (1), 43-52.