Prospectsfor

In-SpaceRe-Fueling

KenYoung

Booz-AllenHamilton

and

JeromeBell

BioDriTechnologies/SpaceLegacyLLC

©KenYoungandJeromeBell,2010.AllRightsReserved.

Introduction

Conceptsforrelievingtheterriblemass-fractionpenaltiesoflaunchingout

ofEarth’sgravitywellbyre-fuelingspacecrafton-orbithavebeen

proposedfordecades(Reference1).Certainlyitmakestheoreticalsenseto

avoidcarryingallneededmissionpropellants(aswellasothervitalfluids

and/orgases)fromliftofftothefinalorbitby‘toppingoff’atanin-space

‘fillingstation.’whichisclearlyanalogoustothere-fuelingofcarsonan

Interstatehighwayonalongautotrip.

Indeed,analogieshavebeendrawntothePonyExpressinthe1880s

andtosteamenginetrainsbeforethat.Inthosecases,the‘fuel’(feedand

waterfortheponiesandwoodandwaterfortheengines)wasgenerally

availableinsituatthewaystation;later,forcoal-drivenandthendiesel

202SpaceCommerce

trains,andfinally,automobiles,thefuelwasproducedelsewhereand

deliveredtore-fuelinglocations.

Thisanalogyisusuallyappliedtoconceptsforon-orbitdepots,

whereincryogenicorstorablepropellantsareproducedontheground,

transportedbyrocket-tankerstoanorbitalstoragedepot,whereitisthen

availablefortransferintoupperstagesand/ororbitalmaneuveringvehicles

(OMV).Twootherconcepts,‘in-situproduction’(ideally,also,‘on-

demand’)ofcryogenicsatthedepot,and‘in-spacere-fuelingfromthe

ground’(analogousto‘mid-airre-fuelingofaircraft’)havealsobeen

proposed.

Thischapterwilladdresstheconsiderabletechnological,operational

andeconomicchallengesforalloftheseconceptsataveryhigh,qualitative

level,andalsoassessestheprospectsofcommercializationofsuch

depot/re-fuelingsystems.Inaddition,wewilldiscusspotentialtechnology

demonstrationsorstudyprojectsthatmighthelptofocusthelogicaland

cost-effectivewayforwardtosuchan‘in-spacerefuelingsystem’aspartof

futurespaceinfrastructures.

ConceptsandtheirCharacteristics

ConceptScenarios(forillustrativepurposesonly)

ConceptAScenario:Cryogenics

Acryogenicpropellantstorageandtransferfacilityislaunched(or

assembledafterseverallaunches)inaLowEarthOrbit(LEO)atan

inclinationofapproximately29degandanoperationalaltitude(mightbe

assembledlower)ofabout200to220nauticalmiles. Actualaltitude

dependsondragcharacteristicsandtheoperatingperiodinthesolarcycle.

ThefacilitywouldconsistprimarilyofcryogenictanksforstorageofLH2

(orMethane,CH4,oranothersuchfuel)andLOXthatarewellinsulated

andshielded,aswellasalsopossiblyactivelycooledtopreventany

significantboil-offoveraperiodofmonths.

Aphotovoltaicenergysystemofmediumcapability(30-60KW)

drivenbyarticulatingsolarpanels(200-400m2)shouldsufficeforpower.

Thestructurehasanaccessibledockingportwithcryofluidtransfer

plumbingtosupplypropellantstovisitingcustomervehicles,suchasUpper

Stages(Centaur,PAMs,etc.)withpayloads(e.g.,comsats),Orbital

TransferVehicles(OTV)orEarthDepartureStages(EDS).TheseStages,

withAutomatedRendezvous,ProximityOperations,Dockingand

Undocking(ARPODU)capabilities,wouldarrivefromlaterlaunchesinto

lowerinsertionorbits,thenrendezvousanddocktemporarilyatthedepot

forre-fuelingand/or‘topping-off’propellants.

Reference2hasaninterestingproposedapproachtosuchaconcept,

andavariationthatavoidstheconsiderablechallengeofcryogenic‘boil-

TheInsideStory203

off’wouldbetousemorestorablepropellants.However,the‘market’for

suchstorablesinpotential‘customer’vehicleswouldhavetobeexamined

andjustifiedashavinganeconomicallyviablecustomerbase. The

preferenceforcryogenicpropellants,particularlyLOXandLH2,isthatthe

performanceefficiency,asmeasuredbytheengineIsp(specificimpulse)is

about25-30%greaterthanstorables.Table1summarizesConceptsA,B,

andCastotheirkeycharacteristics.

ConceptBScenario:Water-Based

ThisscenarioissimilartoConceptAintermsoforbitandbasic

function,butthedepotresourcewouldbe‘water-based.’ Thatis,large

quantitiesofproperly-treatedwater(probablycontainingchemicalcatalysts

suchaspotassium,sodiumorchlorine)wouldbeperiodicallydeliveredto

thefacility,whichwouldbecapableofelectrolyzingthewatertoproduce

H2andO2gases,thenliquefyingthemintoLH2andLOX.

Ideallythesecryopropellantswouldbecreated‘on-demand’and

transferred(withinafewhours)tothecustomervehicle.Obviously,there

wouldalsobeaneedforsomecryostoragecapability,ifonlytouseforthe

depot’sownorbitmaintenancepropulsionsystem. Thelargewatertank

storagerequirementandtheenergysourceneededtoprovidethehuge

(>500KW)electricaldemandforelectrolysisandliquefaction(Ref.3)

woulddrivethesizeandmassofthedepot,whichmighthavetobemuch

largerthanthatinConceptA.

ConceptCScenario:AGround-BasedSystem

Aground-basedre-fuelingsystemwouldbefundamentallydifferent

fromaspacedepot.Thisconceptpostulatesalaunchbooster/upperstage-

tanker(orfleetofthem)thatdeliverspropellants(cryosorstorables)tothe

alreadyon-orbitcustomervehicle(s)loiteringinLEO,waitingtobere-

fueled.Ideallymorethanoneofthesewaitingcustomervehicleswouldbe

waitinginarendezvous-compatibleorbitforcost-efficiencyreasons.

Thetankervehiclewouldrendezvouswiththem(oneatatime,in

probablysignificantlydifferent,butcompatible,orbits)andfacilitatethere-

fueling.Thetankerwouldthenreturntothegroundandberecoveredand

recycledforfuturereuse.Anearlyversionofthisscenariowouldbeto

discardtheemptytankerwithasafe,controlledre-entryandocean

disposal.

Therelativelylowenergypowerrequirement(<20KW)would

probablyallowforuseofbatteriesand/orfuelcells(possiblyevenusing

thecryoventgasesinthecryopropellantscase)and/orasmallphotovoltaic

array.Perhapsthekeydrivingrequirementonthere-fuelingtankerdesign

wouldbethecapabilitytoperformAutomatedRendezvous,Proximity

Operations,Docking/Undocking(ARPODU),withsophisticatedguidance,

navigation,andcontrol,avionic,attitudecontrolandpropulsionsystems,as

Concept/Type / Propellant / EnergySource/KW
Requirement / Mass/Area
(approx.)
A-Cryogenic/
Storable
PropellantDepot
B-Water-
based/Cryo
Producedby
Electrolysis
Depot
C-Ground-based
In-Space
RefuelingTanker
S/C / LH2or
CH4/LOX
GH2/GO
to
LH2/LOX
LH2/LOX
or
Storables / Photovoltaic/30-60
Photovoltaicor
Nuclear/500-1000
Batteries+PV/<20KW / ~50,000kg/200m2
<50,000kg/1000m2
PV
or<50m2Nuclear
<15,000kg/<50m2

204SpaceCommerce

wellasasophisticatedstandard(common)dockingorberthingmechanism,

andstandardpropellanttransferinterfaces. Thetechnologicalonusison

thetankersystemratherthanonthecustomers’vehicles,althoughthey

wouldhavetobeadaptedwithcommondockingandfueltransfer

ConceptsandKeyCharacteristics

MajorTechnologyChallengesforeachconcept

AndCriticaltechnologydevelopment

CryogenicTransferinaMicro-gEnvironment

ConceptsA,BandC:Ifcryogenic(typicallyLH2andLOX)

propellantsinlargequantitiesaretoberapidlytransferredtothetanksofa

customer’svehiclesuchasanorbitaltransferstage,thenthatcapabilityina

micro-genvironmentmustfirstbesuccessfullydemonstrated. Asofthis

writing,thathasnotbeenaccomplished,althoughseveralexperimentsare

beingplannedaspartofthenewNASA’sFlagshipTechnology

Demonstrationapproach(seeSection4ofRef.4).Indicationsarethatsome

dockedthrustingorpossiblytetheredrotationmayberequiredtofacilitate

rapidtransfer,whichwouldfurthercomplicatetheprocess(Ref.5).

Storablepropellanttransferhasbeenaccomplished,andindeed,ithas

beendoneforyearsontheISS,andbeforethat,ontheRussianspace

stationsSalyutandMIR,althoughverylargequantitiesandhighrateshave

apparentlynotbeenachieved.Theattitudecontrolaspectsoftransferring

largemassesofcryogenicliquidsrapidlycouldalsopresentsignificant

challengestoavionics,duetothelargecenterofgravityshiftbetweenthe

dockedvehicles.Anapproachthathasbeensuggestedasanalternativeto

TheInsideStory205

actualfluid-flowtransferistosomehowexchangeentirepropellanttanks,a

fulltankforanear-emptyone. Thevehicledesignandtheoperational

challengesofsuchaschemeseemquitedaunting,andwillbetouchedon

later.

Long-term(weeksormonths)On-orbitCryogenic

Storage,ConceptA(cryogenics)

Ifcryosaredeliveredtoanon-orbitdepottobekeptreadyfor

customerre-fueling,thenobviouslyprovisionmustbemadeforlong-term

storagebeforeeventualre-fuelingofacustomervehicle. Duetothe

dynamicthermalenvironment(Earthshineaswellassolarradiation)cryo

‘boil-off’hasproventobeaverysignificantchallenge(References.1,2

and5).

Thelatestin-orbitCentaurfiring(usingcryopropellants,ofcourse)

wasamereninehoursafterinsertion. Alleviationtechniquesmaywell

involveothertechnologicalchallenges,suchasimprovedtankinsulation

materials,complexshieldingstructures,power-hungryactivecooling

systems,andevensophisticateddepotorientationcontrolavionicsand

propulsion.Aswiththecryotransfertechnology,noneofthesolutionsfor

thesechallenges(iftherearesome)hasyetbeendemonstratedon-orbit.

References1and2aswellastherecentlyannouncedplans(Reference4)

forNASA’sFlagshipTechnologyDemonstrationmissionsspecifically

addresscryotransferandstoragetests.

Althoughtheseproposedtestsarepredicatedontechnologiesthat

havebeenjudgedtobe‘mature’(i.e.,attheTechnologyReadinessLevel

(TRL)ofaround6or7),itistheopinionoftheauthorsthatcryotransfer

andlong-termstorageinspacetechnologyisactuallyatalowerTRL,

perhaps4or5.Testingsuchtechnologiesinasimulatedspace(micro-g)

environment(normallyrequiredforTRL6)hasprovenunfeasible,soan

exceptionmustbemade;hence,theproposedmission,FTD#2(Ref.4),in

the2015timeframe.Thisfirsttestwouldonlydemonstratecryo(LOXand

CH4)transferbetweentwotanksinthesamevehicle,orintra-vehicle.

Whethertheresultsofsuchatestcanbeextrapolatedtopredictinter-

vehiculartransfersuccesswillremaintobeseen.

On-orbitlargequantitywaterelectrolysisand

gaseousH2andO2liquefaction,ConceptB

(Water-based)

IfwateristobeelectrolyzedfirstintoGH2andGO2,andthen

liquefiedintoLH2andLOXcryogenicpropellantsinlargequantities,and

thenrapidlytransferred(‘on-demand’)tothetanksofacustomervehicle

suchasanorbitaltransferstage,thatcapabilityinamicro-genvironment

mustfirstbesuccessfullydemonstrated.

Asofthiswriting,largequantityelectrolysishasnotbeen

accomplished,althoughsmallamounts(5-10kg/day)ofGO2havebeen

206SpaceCommerce

producedbytheOxygenGenerationAssembly(OGA)forcrewbreathing

ontheISSsince2007(Reference6).Unfortunatelytheenergyrequirement

forsuchchemicalphasechangesystemsisextremely large: the

approximatepowerrequiredfortheOGAtoproduceabout10lbsofO2per

dayisabout2.6KW.Althoughitisprobablynotatotallylinear

conversion,thatwouldsuggestthat2000lbsofO2wouldrequiremore

than500KW.

AndthentheGO2mustbesuper-cooledandliquefied!Experiments

insuchmicro-gelectrolysisandliquefactiontechnologymaybeconsidered

aspartofthenewNASA’sTechnologyapproach,althoughthatis

uncertainatthiswriting.

EnergySource

ConceptA(cryogenics)

Becauseadepotthatonlytakesondeliveredcryopropellants,stores

themforpossiblylongperiods(weeksormonths),andthenhastofacilitate

theirtransfertocustomerspacecraft,isnotaparticularlyenergyintensive

operation,theprimaryenergysourcecouldprobablybephotovoltaicsolar

panelsof‘reasonable’size.Articulatingpanelsapproximatingthepairson

theISSthatcanproducebetween50-60KWshouldsuffice.Theneedfor

considerableshieldingand/oractivecoolingtopreventexcessive‘boil-off,’

however,couldcomplicatethesizeandlocationofsuchrotatingarrays.

Fuelcells,makinguseoftheavailable,ventedGH2andGO2couldbeused

incombinationwithsmallersolarpanels.

ConceptB(water-based)

Becauseofthisdepot’srequirementtoelectrolyzewatertogaseous

H2andO2andthenliquefythemtocryogenics,averylargeamountof

energy(>500KW)isneeded.Solarpanelscapableofreliablyproducing

thatmuchenergy,roughly10timesmorethantheISSsystemisactually

capableof,haveneverbeenbuiltandassembledinorbit,muchless

operatedandmaintained.Evenifitisphysicallypossible,assembly,

maintenance(bothontherotatingjointsandpanelsandonthedepot’sorbit

tocounterlargeaerodynamicdrageffects)andoperationofthevast,

rotatingarraysmaketheconceptunfeasibleintheauthors’opinion.

Hence,analternatelargeenergysource,suchasasmall,safenuclear

reactorispostulated.NASAGlennResearchCenterandtheAtomic

EnergyCommissionhavedevelopedsuchaprototypereactorinajoint

project,andonethesizeofa50-gallonkegissaidtobecapableof

producing40KW.ANASATechnologyDemonstrationProjectisplanned

inthe2012timeframe.(Ref.7)Thecostandenvironmental/safetyissues

involved,however,maymakenuclearanon-option.

TheInsideStory207

ConceptC(groundbased)

Theground-basedtanker/re-fuelerspacecraft,launchedintoorbitand

thenmaneuveredtorendezvouswithtwoormore(forefficiency)customer

vehiclestore-fuelthem,wouldlikelyberequiredtostayon-orbitforonlya

fewdaysoraweekorso,thusit’sownenergyneedscouldprobablybe

providedbyacombinationofbatteriesandasmallsolarpanelarrayset

similartothecurrentProgress.Fuelcellsdrivenfromavailable(venting)

GH2andGO2areanotherpossibility.

OperationalChallengesforeachconcept

InitialConstruction/Assembly

ConceptsAandB(depot)–Duetothelargeandcomplexnatureofa

cryogenic-tank–farmdepot,especiallyforConceptB,whereprocessing

mechanismsforelectrolysisandliquefactionarerequired,therefueling

facilitywillprobablyhavetobeassembledinorbit.

Ontheotherhand,ifasufficientlycapableHeavyLiftVehicle

becomesavailableaspartofafuturespaceinfrastructure,thenoneortwo

launchesmaybesufficienttodeliveracompletefacility. ConceptA

requiresalong-termstoragecapability,butthefacilityitselfwould

probablybesmalleroverallthantheConceptBstructure.Itwillnodoubt

havetodeployathermalshield,andiftheenergysourcewerearticulating

solarpanelsthenitwouldlikelyrequireseveraltemporarycrew/robotic

assemblymissions.

TheISSexperiencesinassemblyoperations/disciplineswillbe

extremelyvaluable,butnonethelesstheoperationalcoststobothtrainfor

andexecutetheassemblywilladdgreatlytothedepot’sLifeCycleCosts

(LCC).InthecaseofConceptB,itislikelythatseveralassemblymissions

willberequiredtointegrateandtestoutthecomplexfacility.Thisis

certainlythecaseifanattemptweremadetouseahugeacreageofsolar

panelstoprovidethemassiveenergy(>500KW)requiredforelectrolysis

andliquefaction.Theauthorsbelievethatsuchadesignisunfeasible,as

notedabove,indicatingthatsomeotherenergysourcewouldbeneeded.

Thesizeandtankagecapacityofapropellantdepotwouldbe

determinedbyperformingadetailedanalysisofthepotentialcustomer

missionbaseandtheiranticipatedpropellantrequirements,bothasa

functionoftheneededenergy(DeltaV)andthemission

frequency/scheduletiming.InthecaseofConceptA,alimitingfactormay

wellbethemaximumtimethatcryopropellantscanbeefficientlystoredon

orbit,whichispresentlynotknown. Inaddition,thelaunchvehicle

capabilitiesforbothinitialdepotassemblyandre-supply(tankers)of

propellantscouldalsobelimitingfactors.

208SpaceCommerce

SinceConceptCemploysEarth-basedtankerspacecraft,itwouldnot

haveanorbitalassemblychallenge,butinsteadwouldrequirefairly

complexlaunchwindowtiming,alongwithrendezvousandproximity

operationsrequirements,whicharealsofactorsunderConceptsAandB.

Thus,ConceptCwouldbeclearlylesscostintensiveforinitialoperations.

Ifthere-fuelingtankersarenotrecoverableandre-usable,however,then

ongoingcostsfornewtankervehicles,dependingonthecustomerdemand,

couldquicklyescalate.

Ground/LaunchOperations

Basedonextensivepreviousgroundoperationsexperienceitisalready

knownthatthehandling,loadingandsafeingofvolatilecryogenic

propellants(especiallyLH2)aredifficultandhazardous. Inaddition,

duringtheactuallaunch,ifthespacecraftpayloadconsistsprimarilyof

tanksofthesecryos,therearetheaddedrangesafetyconcerns(evenfor

non-crewedlaunches)becauseoflargerblastenvelopesandoff-nominal

trajectoryimpactzonesdownrange.

Infact,thesedangersconstituteamajorargumentinfavorof

ConceptB,inwhichthepayloadwouldbeessentiallywater,asitsground

handlingrequirements,evenwhentreatedwithcatalystchemicals,isboth

farlesshazardousandlesscostly.

AutomatedRendezvous,ProximityOperations,

Docking/Undocking(ARPODU)

AsConceptsAandBaredepotsinaspecificorbitallocation,itwouldbe

necessaryforcustomerspacecrafttocometothatlocationtore-fuel,much

likeautomobilescomingtothefillingstationoffthehighway.Thebulkof

therequirementsforARPODU,then,fallswithcustomerspacecraft,

althoughthedepotfacilityitselfwouldprovidefortrafficcontroland

communication,aswellasthenecessarydockingport(orgrapplingfor

berthing)systemstofacilitatere-fuelingrequirements.

Itwouldthereforebenecessarytoassurecompatibleand

interoperableARPODUinterfacesbetweenthedepotandthevisiting

spacecraft.Thesewillbediscussedbelow.

InthecaseofConceptC,thelaunchedtanker/re-fuelspacecraft

wouldbetheactiveARPODUvehicle,sothereverseonusistrue,but

interoperable,compatiblesystemssuchasautomatedrendezvousand

proximityoperationsbeacontargetsanddocking/berthingmechanismswill

benecessaryonthecustomerspacecraft.Perhapsthemosttaxingsystem

requirementsonthere-fuelingtankersarethoseofautomatedARPODU

capabilities,includingrobustpropulsionandattitudecontrolsystemsto

TheInsideStory209

enablemultiplerendezvousandrefuelingsindifferingcustomerspacecraft

orbits,whichmayvaryinbothaltitudeandorbitalplanes.

Whilesinglere-fuelingmissionsfromthegroundwouldlikelyprove

tobeeconomicallyinefficient,multiplerendezvousandproximity

operationsmissionshavealreadybeensuccessfullyaccomplishedwiththe

SpaceShuttle,soasimilarversatiletankercapabilityisreasonableto

postulate.

Orbitallocation,orbitmaintenance,launch

window,trafficmanagement/collisionavoidance

Theorbitallocation(inclination)ofthedepotsinConceptsAandBwould

bemarketdriven,astheywouldbebasedwherethemostprojected

customervehicletrafficwouldtransit. Itwouldbelikely,therefore,that

depotsservingforUS-launchedmissionswouldbelocatednearthedue

Eastinclination(approximately28.5deg).

PotentialtrafficatthisinclinationforLEO-startingmissionswould

consistofupperstages,suchasmodified/re-designedCentaurs,orPAMs

(PayloadAssistModules,butwithliquidpropellantsratherthanthenow-

commonsolids)carryingpayloadssuchascommunicationsatellites

destinedforGEO.OtherEarthDepartureStages(EDS)boundforBeyond

EarthOrbit(BEO)mightprovidetheoccasionalcustomer.Thebulkofthis

trafficwouldbecommercialComsats,estimatedatabout24peryear(Ref.

8),aswellasgovernmentfundedmissions(NASA,DOD,NOAA,etc.).

Whiletheidealorbitalaltitudeforadepotwouldbeverylow,inthe

rangeof100-150nauticalmiles,orbitmaintenancenecessarytocounter

aerodynamicdrag,aswellasrendezvousphasingconsiderationstoincrease

customervehiclecatch-upcapabilityandbroadenlaunchwindowdurations

wouldprobablyrequirethatthedepotorbitbeinanaltituderangeofat

least190-220nauticalmiles.Atthis‘popular’combinationofinclination

andaltituderange,theriskoforbitaldebriscollisionswouldberelatively

high,sodepotmaneuverabilityandguidance,navigation,andcontrol

systems(GN&C)requirementsforbothdragcompensationandcollision

avoidance/trafficmanagementwouldbeimportantandpossiblyvery

costly.

Andevenat190-220n.mi.,thepropellantcostsforaltitude

maintenancewillbesignificantandwouldprobablybecomparabletothe

costsexperiencedwiththeISS.DuringtheSolarCycleMaxperiods,for

abouttwoyearsofevery11years,ahigherorbit,suchas220n.mi.to250

n.mi.,mayberequired.Attitudemaintenancemustalsobeconsidered,

sincethathasproventobeasignificantpropellantcosttotheISSand

similarstructures.

Ifdesignedwell,useofControlMomentGyros(CMGs)formost

attitudeoperationsmightsuffice,butsmallthrusterswithlongmoment

210SpaceCommerce

arms(suchasusedontheISSforrollcontrol)cansignificantlyreduce

attitudecontrolpropellantcosts.

Long-termmaintenanceofthedepots,ascriticalon-orbitsystems

fail,loseefficiencyorbecomeobsolete,couldproveextremelycostlysince

repairmissionsarelikelytorequirehumanskillsand/orroboticcapabilities

andtheappropriatesupportingmissioninfrastructure(launchvehicles,

crewedspacecraft,EVAsystems,specializedtraining,etc.).Anotherlong-

termmaintenancecostforConceptsAandB,ofcourse,istheresupplyof

cryogenicsandwater,respectively.Hence,aresupplytankersystem,with

itslaunchboosters,mustalsobeanintegralpartofthelifecycle

infrastructure.Thisrequirementhasledtheauthorstosuggestthatan

evolutionaryapproach,startingwithConceptCtankers,shouldbeseriously

considered.

AlaterdevelopmentcouldbeasmallerAorBdepotinthesun-

synchronous(nearpolar)inclinations,around97-99deg,tosupportre-

fuelingforstagestakingEarth-observationpayloadsouttotheoperational

altituderangearound500n.mi.Whilefuelcoststoreachthataltitudeare

notexcessive,re-fuelingataloweraltitudewouldpermitmuchlarger

payloadssuchasbiggerobservationplatformstobedeliveredefficientlyto

thesun-synchronousorbitaltitudes.Itismorelikely,however,thatsucha

depotwouldserveasaroboticservicingplatformforrepairandfluid/gas

resupplyinconjunctionwithanOrbitalManeuveringVehicle(OMV)that

wouldcomeandgowhileservicingthesun-synchronoussatellites.

Interoperabilityandadaptabilitychallenges

Achallengetore-fuelingconceptsAandBisissueof

interoperabilityandadaptabilityofpotentialcustomervehiclessuchas

existingupperstageCentaurandsolid-fuelPAMs. Modificationsfor

ARPODUcouldinclude,forexample,aninternationalstandarddockingor

berthinginterface,aswellasforpropellantandpropulsionsystems(solids

orstorablesystemsconvertedtocryos)andthenecessaryfueltransfer

plumbinghavealreadybeenmentioned.

Arelatedissueistheactualphysicallocation(s)oncustomervehicles

ofpayload/payloadadapterand/ortherequireddocking/berthinginterface,

plustheroutingofthetransferplumbing.Typically,mostcurrentupper

stageslocatethepayload(normallyasatelliteoraLEOorBEOspacecraft)

onthefrontend,usuallyprotectedinsideashroudoradapteratlaunchuntil

deployedatthemissiondestination.Therearendoftheupperstagehasthe

propellanttanks,engineandenginebell,and,insomecases(likeCentaur)

itinitiallyfirestoplaceitselfandthepayloadintoorbit.

Ifthisupperstageistoapproachandtemporarilyattachatthedepot

forfluidtransfer,whereshouldthedockingorberthingportandthe

transferplumbingbelocated,withallthenecessaryquickdisconnect

valvesandumbilicals,etc.?Theobviousplacewouldseemtobealonga

TheInsideStory211

sideofthespacecraft,butnotonlydoesthatimposeaddedproximityops

navigationandattitude/translationcontrolrequirements,butsuchre-

designs,alongwithstructuralside-loadconstraints,mightactuallypreclude

dockingasacosteffectivepossibility.

Anotherconsequenceofaddingportsandplumbingtocurrentupper

stagerocketswouldbethesignificantshiftofthecenterofgravity,which

wouldthusaffectavionicsandGN&CfornotonlytheARPODUbutalso

possiblythemainenginethrustvectorcontrol.

Hence,aberthingsystemmaybemorefeasible. Berthingis

accomplishedbyadepot-grapplingdevice,suchasaroboticarmsimilarto

thoseontheShuttleandISS. Ifthedepotwerenotcrewed(or‘man-

tended’),thentheentireoperationwouldhavetobecompletely

autonomousorremotelycontrolledfromtheground.Whilethisisnotan

impossiblesolution,itcertainlyaddssignificantLifeCycleCosts(for

addedgroundandcommunicationsinterfacesandoperations).

Alesscostlysolutionwouldthereforebetolocatethedepotatthe

ISS,wherecommondockingandgrappling/berthingcapabilitiesalready

existandhavebeensuccessfullydemonstrated,buttheISSisnotatthe

idealinclination,asitislocatedat51.6deg.Thismightnotbea‘show-

stopper’forre-fuelingofBEOvehicles,althougheventhosemissions

wouldstillincurneedlessweight-to-initial-orbitandARPODU

performancepenalties,butGEOandsomeLEOmissionswouldcertainly

incurverysignificantperformancelosses.Safetyissues,atleastforcryo

depotsattheISS,wouldalsobeafactor.

Intermsofadaptability,thesignificantmodificationsthatwouldbe

requiredforcurrentupperstagevehicles,asnotedabove,leadstheauthors

toconcludethatforConceptsAandB,entirelynewupperstages(possibly

alsohavingOMVand/orOTVcapabilities)mustbedesignedintegrally

withanysuchre-fuelingsysteminfrastructure.[Conceptually,theOMV

hasbeenproposedseveraltimesinthepastasashortrangerobotic'space

tug'thatcouldmovepayloadsaboutinthevicinityoftheSpaceShuttle

and/orSpaceStation.TheOMVwoulduseaseparatepropellant/

propulsionmodulethatwouldbereturnedtoEarthbytheShuttlefor

refueling.Similarly,theOrbitalTransferVehiclewouldbeareusablespace

tug,poweredbyLox/LH2enginesandequippedwithanaerobrake

allowingittobereturnedforrefuelingandreuseatanorbitingspace

stationorpropellantdepot.]

Thatwouldcertainlybethecaseifthemodelwastoswap-out

propellanttank‘modules’usingaroboticmechanismtoreplaceanear-

emptytankwithafullone. Completere-designofconventionalupper

stagevehicleswouldobviouslybenecessary,aswellasdevelopmentand

demonstrationoftheroboticmechanism(s)andthecomplexoperations

required.

212SpaceCommerce

Whilethisisnotimpossible,butconsideringacurrenttechnology

readinesslevelofonly2or3,andtheaddedweightofthenecessary

structures,suchaperformanceoverheadwouldseemtonegatethedesired

objectiveofusingcryopropellantsinthefirstplace,atleastinthecoming

decades.

ForConceptC,asnotedabove,thetechnologicalinteroperabilityand

adaptabilityonusisonthetanker/re-fuelervehicle,whichwouldobviously

beacompletelynewdesign.However,customervehicleswouldstill

requirerelocationoftheirpayload-carryingdesign,aswellasberthing

fixturesandfluidtransferplumbingmodifications.Althoughthecustomer

vehiclewouldbethe‘passive’partnerinthisARPODUscenario,andthus

notrequirecomplexnewGN&Candavionics,thedocking/berthing

interfaceandtransferplumbingaccommodationchangeswouldstillbe

major.Thus,eventheground-basedtankerconceptwouldnecessitatenew

customervehicledesigns,ascontrastedwithmerelyadaptingcurrentupper

stages.

Economicconsiderationsandchallenges

PotentialMarkets(bothgovernmentaland

private/commercial)

AcursorylookatpotentialmarketsinLEO/GEOleadstheauthorsto

suggestthatGEOpayloadssuchascommunicationsatellitesand

observation(intelligenceandweather)satellites,bothcommercialand

government(military,NASAandNOAA),mayofferthemostpromisein

termsoffuturetrafficvolume.Currentprojections(Ref.8)areforabout24

suchpayloadmissionsperyear,orabout2everymonth.Thus,adepotor

ground-basedtankerservicethatcouldre-fueltheupperstagesofthe

Centaur/PAMclasswouldenablemuchlargersuchpayloads(withbigger

antennaeandpowerarrays,moreredundantsystems,etc.)tobeplacedin

GEO.Noquantitativeorqualitativeassessmentofsuchfuture

traffic/marketpossibilitieshasbeendoneasofthiswriting,althougha

hypotheticalscenariowillbeexaminedbelow.AlesslikelyLEOmarket,

butonestillworthyofconsiderationandanalysis,mayexistforSun-

synchronous-typeEarthobservation(commercial,NASA/NOAA,and

military)missions.

HypotheticalScenariotoestimateaRoughOrderof

Magnitude(ROM)MarketPriceandReturnon

Investment(ROI)forConceptC

AccordingtoaEuroconsultReport(Ref.8)ontheprojectedGEO

satellitemarketforthenexttenyears,about24comsatsperyearmaybe

launched.Theaveragecosttobuildonesatellitewillbeabout$100M,and

thelaunchcostwillbeabout$50M.Theaverageweightofthesatellite,

TheInsideStory213

includingitsGEOstationkeepingfuel,willbeabout8000lbs,althoughthe

trendistowardheavierpayloadsof12,000to15,000lbs.(‘Stationkeeping’

referstothefuelrequiredtomaintainthesatellite’sdesiredorbit.)

Heaviercomsatsarepreferredforatleastthreereasons:

1.SincetheGEOlongitudinal‘slots’arehighlyvalueditisbetter

tohaveonelargersatversustwoormore‘neighboring’smaller

sats,becauseofradio/TVfrequencyinterferenceandcollision

concerns.Inaddition,long-termoperationsandmaintenance

costsarelower.

2.Largersatscancontainmorebroadcastcapabilities,including

biggerarrays,largerantennae,broaderbandwidth,etc.

3.Moreredundantsystemsandmorestationkeepingfuelmeannot

onlymorereliablebutlongerusefulsatellitelives,thus

increasingandprolongingrevenuestreams.

Hypothetically,then,ifaConceptC,ground-basedtankerre-fueling

servicewerepostulatedtocaptureonethirdoftheprojectedannualmarket,

or8satellitesperyear,aROMpricingandROIcanbeestimated.

Assumingthatthe8customerswerewillingtobescheduledinpairs(a

weekorsoapart)forlaunch,theirupperstages(sayamodifiedCentaur)

couldbere-fueledinLEObythesametankervehicle,andthentheirlarger

satellitescouldbeboostedtotheirequatorial,GEOorbit. Ifthese

customerswerewillingtopayabout15%morethantheircurrentcostsfor

there-fueling,thenapositiveROIcanbepostulatedforthetankerservice.

Forexample,assumingthetwoGEOcustomerswishtobuildlarger

sats,increasingfrom8,000lbsto14,000lbs,theywouldprobablyonly

havemarginallyhigherbuildingcostsofaround$105M. Theycouldbe

launchedwiththeirupperstages(off-loadedtoabout1/3fullofcryo)anda

6,000lbsheaviercomsatpayloadforroughlythesame$50Meach.Ifthe

tankervehiclesystem,weighingatitslaunchonlyabout15,000lbs,with

about12,000lbsoftransferablefuel,couldbelaunchedforabout$20Mon

asmaller,cheaperlaunchsystem,performthetwore-fuelingsinLEOand

thenbedeorbitedintoasafeoceanentry,thechargeforeachre-fueling

couldbeabout$13M,returninga$5Mprofit,assuminga$1Mmissioncost

forthetankerservice.

TheGEOcustomerswouldbepayingabout$18Mextraeach,but

theywouldhavealmosttwicethecomsatcapabilityinGEO.Sincetheir

currentlaunchsystemcostsabout$6,250perpound,itwouldcostabout

$37.5Mfortheadditionalweight,(ifinfactthelaunchvehiclecouldeven

liftthatmuchextraweight),thenetsavingstothecomsatoperatorisnearly

$20M.

Thishypotheticalcase,ofcourse,doesnotconsiderthecapital

investments,estimatedintherangeof $400M,requiredfortheinitial

tankersystemandthemodifiedupperstagesystemsinfrastructures.

214SpaceCommerce

Amortizedat$5Mpermissionandat4missionsperyear,and

assumingnogovernmentsubsidies,itwouldtake20to25yearstoamortize

thedevelopmentcostofthetankersystem.Andwhilethereisnoguarantee

thatasmalllauncherforthetankercouldbefoundfor$20M,some

fledglingcommerciallaunchservicestodayhaveprojectedsuchprices.

Havingworkedthroughallthreescenarios,theauthorstherefore

concludethatareasonableROIisnotcurrentlypossibleforanyofthe

postulatedconcepts,asbothofthetwodepotinfrastructuresandtheir

LCCswouldlikelybeevenmorecostly.

RecommendedStudyProject/Technological

DemonstrationApproach

Whilethischapterhastakenonlyaverytop-levelandmostlyqualitative

lookatthedauntingchallengesfacingarealisticapproachtoan

economicallyviableOn-orbitRe-fuelinginfrastructure,otherconceptsmay

alsoexistandbeworthyofdetailedexamination.

Perhapsotherpropellants,suchasstorablesorsolids,orevenion-

engineresourcesshouldcontinuetobestudied.RecentNASAplansfora

FlagshipTechnologyDemonstrationProgramincludemissionsto

demonstratetransferandlong-termstorageonorbitofcryogenic

propellants(first,LOXandmethane,thenLH2),aswellasother

technologiesinvolved,suchasARPODUandpowersystems.

Theauthorsbelievesuchdemonstrationsareworththeconsiderable

investment,aslongas,inparallel,theentirecryo(orotherpropellant)re-

fuelingconceptsandtheirlong-rangepossibilitiesarestudiedin-depthfor

atleast6to12months.Particularemphasisshouldbeplacednotonlyon

thetechnicalandoperationalchallenges,butalsoontheLCCand

associatedscheduleandcostrisks.Realisticfuturemarket/trafficanalyzes,

particularlywithrespecttoprivateorcommercialmarkets,seemcriticalto

anychanceforprojectingabelievableROI.

Thestudyteamshouldbecomposedofknowledgeableexpertsnot

onlyfromNASAandothergovernmentagenciessuchasDoD,NOAAand

theDOE,butalsoacademiaandprivateindustries,suchaschemical/energy

companiesandspacecraft/launchproviders.

Conclusions

ThischapterhasdiscussedthreeconceptsforRe-fuelingSpacecraftOn

Orbit,andtheirconsiderabletechnological,operationalandeconomic

challenges.Themajorchallengesaresummarizedhere.

TheInsideStory215

Technology

Theon-orbittransferandlong-termstorageofcryogenicpropellants

isthebiggestchallenge.Thistechnologymaturitylevelisnohigherthan

TRL5,andperhapslower.Fortunately,considerablerealflightexperience

anddatafromthedecadesthattheCentaurhasbeensuccessfullyflying

exists,butverylittlehasbeendonetoextendsuchmissionstogain

knowledgetoextrapolateorapplyittothischallenge.

Solvingthetransferandstoragechallengesiskey,ofcourse,for

ConceptA.Itisalsokey,butpossiblytoalesserextent,onConceptBif

‘on-demand’on-orbitproductionofcryosfromwatercanbereliably

achieved.Eventhen,thechallengeremainstoprovideadequatepowerfor

therequiredelectrolysisofwaterandtheliquefactionofgaseousO2and

H2.Nuclearpower,evenwithitshighcostandattendantenvironmental

andsafetyissues,seemstobetheonlypossiblesolutiontothatenormous

powerrequirement.ConceptC,withitsrelativelyshort-termedon-orbit

missionsofaweekortwo,mayalsohavecryostorage‘boil-off’problems,

leadingtocostlyactive-coolingandrelativelyhighpowerrequirements.

DockingorBerthing

Thesecondtechnologicalhurdleforallthreeconceptsisnotsomuch

therequirementforARPO,butthatofdockingorberthingitself,withits

challengingimpactsonthecostumerupper-stagevehicles’structural

designsandtheirGN&Csystems(forConceptsAandB,particularly)and

onthetankerservicevehicleforConceptC.Thebiggestchallengewould

seemtobeproximityoperationsandthesubsequentactualdockingor

berthing,asthatmustbeeithercompletelyautonomousorremotely-

assistedbygroundcontrol.Similartechnologyhasbeenoperationalfor

yearsontheISS.Arelatedchallenge,ofcourse,isthatofsystems

interoperability,particularlywithrespecttoassuringinternationalstandards

forproximityoperations‘homing’systemsandrelatednavigationaidesand

sensors,aswellasforcommondocking/berthingmechanismsandfuel

transferplumbing.

Economics

Thebiggestproblemsseemtobetheapparentlackofasubstantial

customermarket,alongwiththehighcapitalinvestmentrequiredtobuilda

re-fuelingsysteminfrastructure.Acustomertrafficrateofonly8to12

missionsperyear(mostlytoGEO,allowingforafewgovernmentmissions

also)istoofewtorealizeapositiveROI.

Andwhileourhypotheticalscenariowascalculatedwithfranklyvery

optimisticassumptionsaboutlaunchpricesandvehicleandcustomer

satellitere-designcoststoshowapositiveROIof$5Mperyear,this

illustrateshowdifficultitmaybetorecovercapitalinvestmentsovera20-

25yearperiod.

216SpaceCommerce

Inaddition,theprobablehighoperationsandsustainingmaintenance

costs,especiallyforthedepotconcepts,wouldseemtomakerecoveryof

theirLCCahighriskventure.Abigproblemwiththeground-basedtanker

approachisobviouslytherecurringlaunchandnewtankerreplacement

costsintheeventthattankerscannotbedesignedandbuiltcheaplyfor

entry,recoveryandre-use.

Givenallthesemajorchallenges,aswellasmanylesserbut

significantonestoucheduponherein,it’sclearthatanin-depth,

cooperativestudyprojectinvolvinggovernment,internationalpartners,

privateenterprise(bothpotentialprovidersandcustomers),andacademic

participantsbeconductedinparallelwiththeupcomingNASAFlagship

TechnologyDemonstrationProgram.Indeed,thatProgramshould

probablyleadthestudy.Lifecyclecosts,technicalandschedulerisksand

realisticspacetraffic/marketanalysesshouldbeemphasized.

Andforthedepotapproach,particularly,theurgetofollowa‘buildit

andtheywillcome’credoshouldbestronglyresisted.Sinceadepotmust

alwayshaveatankerre-supplysystemasanessentialpartofits

infrastructure,prudentthinkingwouldseriouslyconsideranevolutionary

‘ground-basedtanker’approachinitially.Theultimatesuccessofsuchan

endeavorwouldclearlyhingeontheLEO/GEOcommercialspacemarket

customers.

Insummary,then,theauthorsbelievethattheprospectsforacost-

effective,commercial,in-spacere-fuelingsystemareatpresentverylow,

andentailextremelyhighrisks.

•••

TheInsideStory217

KenYoung

KenwasborninAustin,Texas.HereceivedanAero-

SpaceEngineeringdegreefromtheUniversityofTexasin

1962.HewasemployedbytheNASAMannedSpacecraft

Center(nowJohnsonSpaceCenter)inJune,1962and

subsequentlyworkedonallU.S.humanspaceflight

programs(fromMercurytoConstellation).DuringGemini,

Apollo,SkylabandASTP,Kenwasatrajectoryexpert,

missionplannerandarendezvousspecialist.Kenserved

asareal-timeflightdynamicsadvisorintheMission

ControlStaffSupportRoomsthroughoutGemini,Apollo

andSkylab.KenbecameChiefoftheFlightPlanningBranchpriortothefirst

SpaceShuttlelaunchin1981.

HeretiredfromNASAinlate1987andwentontoworkorconsultfor

severalNASA-JSCcontractors,includingGrumman,Northrop,Loral,

LockheedMartin,SAIC,BigelowandBooz-AllenHamilton,wherehenowis

aconsultantontheConstellationProgram.

Jerome(Jerry)Bell

Jerome(Jerry)Bell,anativeHoustonian,earnedhis

BachelorofScienceDegreeinAerospaceEngineering

fromtheUniversityofTexas,Austinin1963.Following

9monthsofEmploymentwiththeMcDonnellAircraft

CompanyinSt.Louisworkinginaerodynamics

supportingthePhantom2AircraftProgram,heaccepteda

positionwithNASAMannedSpaceCraftCenter(now

JohnsonSpaceCenter)whereheworkedasacivilservant

forover42yearsuntilretirementin2006.

HehasworkedoneverymannedspaceprogramfromProjectGeminiin

varioustechnicalandProgramManagementcapacitiesandProgramPhases

includingProgramformulation,requirementandconceptdevelopment,

operations,andtechnologyinselectedareas. JerryhasservedasaJSC

representativetoSeveralAgencywideactivitiesincludingtheNASASpace

StationTaskForceConceptDevelopmentGroupatNASAHQ,NonAdvocacy

reviewteams,ProposalreviewandSourceBoardtechnicalsupport,DOD’s

TechnologyReinvestmentProgram,andOperationsRequirementDevelopment

ManagerwithinJSCExplorationProgramOffice(SpaceExplorationInitiative

proposedunderGeorgeH.W.Bush).

Sinceretirement,hehasjoinedBioDriTechnologies/SpaceLegacy

LLCastechnicaladvisorprovidingcoordinationandindependent

advice/recommendationswithregardtoactivitiesbetweenBioDriandNASA.

Inthiscapacity,Mr.Bellhasacquiredadegreeofunderstandingabout

antimicrobialsandtheirpotentialspaceapplicationsandissues.

218SpaceCommerce

References

1.“TechnologyRequirementsforanOrbitFuelDepot-ANecessary

ElementofaSpaceInfrastructure,”NASA/TM-101370,A.Stubbs,R.

Cohen,A.Willoughby,Oct.1988.

2.“APractical,AffordableCryogenicPropellantDepotBasedonULA’s

FlightExperience,”B.Kutter,F.Zegler,G.O’Neil,B.Pitchford,AIAA

2008-7644,Sept.2008.

3.“HydrogenBasics,”HomePower#32,A.Potter,M.Newell,Dec/Jan

1992.

4.“FlagshipTechnologyDemonstrationsNASARequestForInformation,”

NNH10ZTT003L,May17,2010.

5.“TechnologiesforRefuelingSpacecraftOn-Orbit,”D.Chato,NASA/TM-

2000-210476(AIAA-2000-5107),Nov.2000.

6.“NewNASASystemWillHelpSpaceStationCrewsBreatheEasier,”A.

Beutel,L.Madison,J.Morcone,NASANewsRelease07-159,July17,

2007.

7.“NASAStepsClosertoNuclearPowerforMoonBase,”T.Malik,

Space.comwebsite,posted08/06/2009.

8.“SpaceForecastPredictsSatelliteProductionBoom,”(EuroconsultofParis

Report),P.deSelding,SpaceNews.comwebsite,posted6/15/2009.