-8-
HAEF IB - MATH HL
TEST 4
Trigonometry
Date: 25 January 2018
by Christos Nikolaidis
Paper 1: Without GDC
Name:______
Questions
1. [Maximum mark: 5]
Use the formula for to find the exact value of.
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
2. [Maximum mark: 4]
Given that , find the exact value of .
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
3. [Maximum mark: 5]
Solve the equation
,
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
4. [Maximum mark: 7]
(a) Write down the minimum and the maximum value of the expression
[1 mark]
(b) Solve the equation
, [6 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
5. [Maximum mark: 5]
Consider a right-angled triangle ABC with and sides ,, . Given that , and are in arithmetic progression, find the exact values of and .
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
6. [Maximum mark: 14]
(a) Show that
[2 marks]
(b) Hence prove, by mathematical induction, that
for all [7 marks]
(c) Hence solve the equation
in the interval [5 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
-8-
Paper 2: With GDC
Name:______
Questions
1. [Maximum mark: 5]
In a triangle ABC, =0.5 radians, AB=50cm, AC=40cm. Find the possible values of angle and the smallest possible area of the triangle ABC. [5 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
2. [Maximum mark: 6]
A ship sails from port A on a bearing of 070o for 50 km and reaches point B. From B, it changes its course and sails on a bearing of 010o for another 50 km to point C. Find
(a) The distance of port A to point C. [4 marks]
(b) The bearing of point C from port A. [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
3. [Maximum mark: 6]
The following three-dimensional diagram shows a vertical flagpole AD on horizontal ground. The angles of elevation of the top D from the points B and C are 40o and 35o respectively.
Given that BC = 50m and find the height of the flagpole.
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
4. [Maximum mark: 7]
Consider the circle with center O and radius r, as in the follwing diagram. The lines (AB) and (AC) are tagent to the circle at B and C respectively. Let
(a) Show that the area quadrilateral ABOC is [3 marks]
(b) Given that the area of the shaded region is equal to the area of the sector OBDC,
find the value of angle θ in degrees. [4 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
5. [Maximum mark: 10]
Consider two intersecting circles with radii 6 and 11 respectively, as in the diagram below. The distance between their centres A and B is 13. The line segment MN is tangent to both circles.
Find
(a) The length of the line segment MN. [2 marks]
(b) The size of the angle ABN [2 marks]
(c) The total area of the region covered by the two circles (shaded region). [6 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
6. [Maximum mark: 6]
(a) Show that [4 marks]
(b) Hence find the exact value of [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......