Extreme longevity in trees: live slow die old?

Julien Issartel and Clément Coiffard

Supplementary information

Species / Maximum Lifespan
(Loge days) / Respiration rate
(Loge KJ/gFW/d)
Acer rubrum / 10.77 b / -5.33 / Spicer and Holbrook 2007
Acer saccharum / 11.20 b / -4.93 / Bolstad et al. 2004
Dacrydium cupressinum / 12.58 a / -5.58 / Bowman et al. 2005
Fagus grandifolia / 11.60 c / -4.92 / McGuire and Teskey 2004
Fagus sylvatica / 11.42 d / -4.50 / Damesin 2003
Fraxinus americana / 11.42 b / -5.26 / Spicer and Holbrook 2007
Fraxinus pennsylvanica / 10.28 b / -4.06 / Bolstad et al. 2004
Pinus ponderosa / 12.85 e / -6.41 / Pruyn et al. 2005
Pinus strobus / 12.01 e / -5.35 / Spicer and Holbrook 2007
Platanus occidentalis / 11.60 b / -5.16 / McGuire and Teskey 2004
Pseudotsuga menziesii / 13.07 e / -6.30 / Pruyn et al. 2005
Quercus alba / 12.30 e / -5.46 / Edwards and Hanson 1996
Quercus rubra / 11.83 b / -4.99 / Spicer and Holbrook 2007
Tilia americana / 11.20 b / -5.48 / Bolstad et al. 2004
Tsuga canadensis / 12.21 a / -5.51 / Spicer and Holbrook 2007

Tree maximum longevities and associated metabolic rates used in the analysis with their respective references. Stem respiration rates were measured in early summer or in early fall.

Loge KJ/gFW/d – natural logarithm of the stem dark respiration converted in KJ using respiratory quotient of unity (1 mol CO2 released = 1 mol O2 consumed), energy conversion 1 ml O2 = 20 J. When data were expressed in dry weight, they were converted in fresh weight sapwood water content.

a: conifers.org

b: plants.usda.gov

c: na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm

d: Rameau, J. C., Mansion, D., Dume, G., Lecointe, A., Timbal, J., Dupont, P., and Keller, R. 1993, Flore Forestière Française, Guide Ecologique Illustré, Lavoisier TEC and DOC Diffusion, Paris, p. 2419.

e: Loehle C (1987) Tree life history strategies. Canadian Journal of Forest Research 18:209-222

Species / Maximum Lifespan
(Loge days) / Gross photosynthesis
(Loge KJ/gFW/d)
Abies lasiocarpa / 8.00 / -2.36
Acer rubrum / 5.08 / -0.09
Acer rubrum / 5.14 / -0.23
Acer saccharum / 5.14 / -0.33
Bellucia grossularioides / 5.56 / -0.22
Cecropia ficifolia / 4.43 / 0.59
Eleagnus angustifolia / 4.53 / 0.26
Juniperus monosperma / 7.79 / -2.30
Licania heteromorpha / 7.12 / -0.94
Liriodendron tulipifera / 5.10 / 0.21
Miconia dispar / 5.92 / -0.43
Ocotea costulata / 7.10 / -1.11
Persea borbonia / 6.32 / -0.79
Picea engelmanii / 7.93 / -2.37
Picea glauca / 7.53 / -1.74
Pinus banksiana / 6.73 / -1.43
Pinus flexilis / 7.02 / -1.63
Pinus palustris / 6.90 / -2.04
Pinus rigida / 6.93 / -0.90
Pinus serotina / 6.73 / -2.04
Pinus strobus / 6.48 / -0.99
Pinus strobus / 6.48 / -1.11
Pinus sylvestris / 6.73 / -1.32
Populus deltoides / 5.04 / 0.16
Populus fremontii / 4.53 / -0.12
Populus tremuloides / 5.04 / 0.07
Protium sp. / 6.93 / -1.33
Protium sp. / 6.99 / -0.72
Quercus coccinea / 5.17 / -0.21
Quercus ellipsoidalis / 5.23 / -0.09
Quercus laevis / 5.46 / -0.74
Quercus virginiana var. geminata / 5.83 / -0.55
Rhododendron maximum / 7.31 / -1.39
Robinia pseudoacacia / 4.96 / 0.59
Taxodium distichum / 5.31 / -0.71
Tsuga canadensis / 7.53 / -1.16
Vismia japurensis / 5.37 / 0.00
Vismia lauriformis / 4.94 / 0.13

Leaf maximum longevities and associated gross photosynthesis (i.e. net photosynthesis + dark respiration) used in the analysis.

Loge KJ/gFW/d – natural logarithm of the gross photosynthesis. Dark respiration was converted in KJ using respiratory quotient of unity (1 mol CO2 released = 1 mol O2 consumed), energy conversion: 1 ml O2 = 20 J. Net photosynthesis was converted in KJ assuming that 10 photons with a 750 nm wavelength are implicated in the conversion of one CO2 to CH2O, energy conversion: 1 mol CO2 = 1591 KJ. Data were all converted in FW using corresponding tissue water content. Dark respirations, net photosynthesis and life spans were gathered form Reich et al. 1998 and Reich et al. 1999, respectively.

References

Bolstad PV, Davis KJ, Martin J, Cook BD, Wang W (2004) Component and whole-system respiration fluxes in northern deciduous forests. Tree Physiology 24:493-504.

Bowman WP, Barbour MM, Turnbull MH, Tissue DT, Whitehead D, Griffin KL (2005) Sap flow rates and sapwood density are critical factors in within- and between-tree variation in CO2 efflux from stems of mature Dacrydium cupressinum trees. New Phytologist 167:815-828.

Damesin C (2003) Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytologist 158:465-475.

Edwards NT, Hanson PJ (1996) Stem respiration in a closed-canopy upland oak forest. Tree Physiology 16:433-439.

McGuire MA, Teskey RO (2004) Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO2. Tree Physiology 24:571-578.

Pruyn ML, Gartner BL, Harmon ME (2005) Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width. J. Exp. Bot. 56:2637-2649.

Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: A test across six biomes. Ecology 80:1955-1969.

Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471-482.

Spicer R, Holbrook NM (2007) Effects of carbon dioxide and oxygen on sapwood respiration in five temperate tree species. J. Exp. Bot. 58:1313-1320.