Name:

Class:

Date:

ID:A

Math10FoundationsPre-calculusChapter3UnitTest

MultipleChoice

Identify the choice thatbest completes the statementoranswers thequestion.

1. Write theprime factorization of630.

a.2⋅5⋅7⋅9b.2⋅5⋅63c.2⋅32 ⋅5⋅7d.2⋅3⋅5⋅7

2. Determine thegreatest common factorof84, 210, and 336.

a.14b.1680c.21d.42

3. Determine the least common multipleof48, 72, and 108.

a.432b.216c.31 104d.12

4. Oneneighbour cutshis lawn every8 days. Anotherneighbour cutsher lawn every10 days. Supposeboth neighbours cut their lawns today. How manydayswillpassbeforeboth neighbours cut their lawnson the samedayagain?

a.80 daysb.60 daysc.2daysd.40days

5. There are16 male students and 20 female students in aGrade10 math class. The teacherwants to divide the class into groupswith the samenumberofmales and the samenumberof females in each group. What is the greatestnumberofgroups the teacher can make?

a.12b.4c.8d.16

6. Determine the square rootof250 000.

a.100b.63c.500d.200

7. Determine the cube rootof42 875.

a.1225b.4763.9c.207.1d.35

8. Determine the side length of this square.

a.63 cmb.15.83 cmc.992.25cmd.441cm

9. How manyperfect squarewholenumbers arebetween 5000 and 6000?

a.6b.8c.1d.7

10. How manyperfect cubewholenumbers arebetween 6000 and 8500?

a.3b.2c.1d.15

11. Which of thefollowingnumbers isnotboth aperfect square and aperfect cube?

a.531 441b.12 544c.117 649d.15 625

1

Name:

ID:A

12. Factor the trinomial−33b2 +99b +77.

a.−11(3b2 −9b+7)c.−11(3b2 −9b−7)

b.−33(b2 −3b −7)d.33(−b2 +27b+7)

13. Factor the trinomial−42x5y6 −24x4y5 −54x3y7.

a.6x4y5(−7xy−4−9y2)c.−3x3y5(14x2y+8x +18y2)

b.−6x3y5(7x2y+4x+9y2)d.−6x3(7x2y6 +4xy5 +9y7)

14. Simplifythe expressiony2 +8y−6−9y2 −24y−26, then factor.

a.−8(y2 −2y −4)c.−4(2y2 +4y+8)

b.−8(y2 +2y +4)d.−4(2y2 +4y+1)

15. Which of the followingtrinomials can be represented bya rectangle?Use algebra tiles to check.

a. / z2 +33z+9 / c. / z2 +10z+2
b. / z2 +12z+63 / d. / z2 +10z+25

16. Which of the followingtrinomials can be represented bya rectangle?Use algebra tiles to check. a.4c2 +33c+8 c. 4c2 +13c+8

b.4c2 +21c+3d.4c2 +4c+15

17. Expand and simplify:(4−r)(7−r)

a.28−11r+r2c.28+3r+r2

b.28−3r+r2d.28+11r+r2

18. Factor:v2 −13v+36

a.(v+3)(v +12)c.(v−4)(v −9)

b.(v−3)(v −12)d.(v+4)(v +9)

19. Factor:−24−2x+x2

a.(6+x)(−4+x)c.(−3+x)(8+x)

b.(3+x)(−8+x)d.(−6+x)(4+x)

20. Complete:(a+6)(a−)=a2 +a−12

a.(a+6)(a−4)=a2 +4a−12c.(a+6)(a−2)=a2 +2a−12

b.(a+6)(a−2)=a2 +4a−12d.(a+6)(a−4)=a2 +2a−12

21. Factor:c2 −4c −117

a.(c−9)(c +13)c.(c+9)(c −13)

b.(c−3)(c +39)d.(c+3)(c −39)

22. Complete. (k−)(k−5)=k2 −k+135

a.(k−27)(k−22)=k2 −5k+135c.(k−27)(k−32)=k2 −5k+135

b.(k−27)(k−5)=k2 −32k+135d.(k−27)(k−5)=k2 −22k+135

2

Name:

ID:A

23. Which multiplication sentencedoes this setof algebra tiles represent?

a.(2x−2)(2x+2)
b.(2x2 +2)(2x2 +2) / c. d. / (2x2 +2x)(2x2 +2x) (2x+2)(2x+2)
24. / Expand and simplify:(8g −3)(7−3g)
a.−24g2 +65g −21 / c. / −24g2 +47g −21
b.−24g2 −65g −21 / d. / 24g2 +65g−21
25. / Factor:25x2 +58x+16
a.(25x+4)(x+4) / c. / (5x+4)(5x+4)
b.(25x+8)(x+2) / d. / (5x+8)(5x+2)
26. / Expand and simplify:3(1−2t)(9+4t)
a.−24t2 +42t+27 / c. / −72t2 −126t+81
b.−24t2 +66t+27 / d. / −24t2 −42t+27
27. / Expand and simplify:(5m−3n)2
a.25m2 −9n2 / c. / 25m2 −30mn +9n2
b.25m2 −15mn +9n2 / d. / 25m2 +9n2
28. / Expand and simplify:(4d −1)(5d2 +12d −3)
a.20d3 +53d2 +3 / c. / 20d3 +43d2 −24d+3
b.20d3 +48d2 −12d+3 / d. / 20d3 +43d2 +3
29. / Factor:16p2 −81q2
a.(4p−9q)2 / c. / (16p−9q)(p−9q)
b.(4p+9q)2 / d. / (4p +9q)(4p−9q)

30. Find an integer to replace“ so that this trinomial isaperfect square.

64v2 −vw+81w2

a.144c.72

b.648d.18

3

Name:

ID:A

31. Factor:49s2 −112st+64t2

a.(7s−8t)2c.(7s−t)(7s−64t)

b.(7s+8t)2d.(7s−8t)(7s+8t)

32. Identifythispolynomial asaperfect square trinomial, adifferenceof squares, orneither.

9a2 +9a+36

a.Differenceof squaresc.Neither

b.Perfect square trinomial

33. Identifythispolynomial asaperfect square trinomial, adifferenceof squares, orneither.

25g2 −9h2

a.Perfect square trinomialc.Neither

b.Differenceof squares

ShortAnswer

34. Find and correct the errors in this factorization.

w2 −2w−80 =(w−8)(w+10)

35. Find and correct the error(s) in this solution of factoringbydecomposition.

90y2 +77y −52 =90y2 +117y −40y−52

=9y(10y+13)+4(10y+13)

=(10y+13)(9y+4)

Problem

36. List all theprimenumbersbetween 120 and 140. How do you know theyareprimenumbers?

37. Germainewants to painta cubewith volume2744 m3.Each tub ofpaint covers79 m2.How manytubsof paintdoesGermaineneed to paint the cube?

38. Factor. Checkbyexpanding.

8z2 −112z+360

39. Factor5x2 +17x+6.Explain your steps.

40. Factor. Explain your steps.

196x2 −16y2

4

ID:A

Math10FoundationsPre-calculusChapter3UnitTest

AnswerSection

MULTIPLE CHOICE

1. ANS: CPTS: 1DIF:Easy

REF: 3.1 Factors and Multiplesof WholeNumbersLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

2. ANS: DPTS: 1DIF:Moderate

REF: 3.1 Factors and Multiplesof WholeNumbersLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

3. ANS: APTS: 1DIF:Moderate

REF: 3.1 Factors and Multiplesof WholeNumbersLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

4. ANS: DPTS: 1DIF:Moderate

REF: 3.1 Factors and Multiplesof WholeNumbersLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

5. ANS: BPTS: 1DIF:Moderate

REF: 3.1 Factors and Multiplesof WholeNumbersLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

6. ANS: CPTS: 1DIF:Easy

REF: 3.2 PerfectSquares, PerfectCubes, and TheirRootsLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

7. ANS: DPTS: 1DIF:Easy

REF: 3.2 PerfectSquares, PerfectCubes, and TheirRootsLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

8. ANS: APTS: 1DIF:Easy

REF: 3.2 PerfectSquares, PerfectCubes, and TheirRootsLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

9. ANS: DPTS: 1DIF:Moderate

REF: 3.2 PerfectSquares, PerfectCubes, and TheirRootsLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

10. ANS: BPTS: 1DIF:Moderate

REF: 3.2 PerfectSquares, PerfectCubes, and TheirRootsLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

11. ANS: BPTS: 1DIF:Moderate

REF: 3.2 PerfectSquares, PerfectCubes, and TheirRootsLOC: 10.AN1

TOP: Algebra and NumberKEY: ProceduralKnowledge

12. ANS: CPTS: 1DIF:Easy

REF: 3.3 Common FactorsofaPolynomialLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

13. ANS: BPTS: 1DIF:Moderate

REF: 3.3 Common FactorsofaPolynomialLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

14. ANS: BPTS: 1DIF:Moderate

REF: 3.3 Common FactorsofaPolynomialLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

1

ID:A

15. ANS: DPTS: 1DIF:Easy

REF: 3.4 ModellingTrinomials asBinomialProductsLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

16. ANS: APTS: 1DIF:Easy

REF: 3.4 ModellingTrinomials asBinomialProductsLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

17. ANS: APTS: 1DIF:Easy

REF: 3.5 Polynomialsof theFormx^2 +bx +cLOC: 10.AN4

TOP: Algebra and NumberKEY: ProceduralKnowledge

18. ANS: CPTS: 1DIF:Easy

REF: 3.5 Polynomialsof theFormx^2 +bx +cLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

19. ANS: DPTS: 1DIF:Moderate

REF: 3.5 Polynomialsof theFormx^2 +bx +cLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

20. ANS: BPTS: 1DIF:Moderate

REF: 3.5 Polynomialsof theFormx^2 +bx +cLOC: 10.AN4

TOP: Algebra and NumberKEY: ProceduralKnowledge

21. ANS: CPTS: 1DIF:Easy

REF: 3.5 Polynomialsof theFormx^2 +bx +cLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

22. ANS: BPTS: 1DIF:Moderate

REF: 3.5 Polynomialsof theFormx^2 +bx +cLOC: 10.AN4

TOP: Algebra and NumberKEY: ProceduralKnowledge

23. ANS: DPTS: 1DIF:Easy

REF: 3.6 Polynomialsof theFormax^2 +bx +cLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

24. ANS: APTS: 1DIF:Easy

REF: 3.6 Polynomialsof theFormax^2 +bx +cLOC: 10.AN4

TOP: Algebra and NumberKEY: ProceduralKnowledge

25. ANS: BPTS: 1DIF:Easy

REF: 3.6 Polynomialsof theFormax^2 +bx +cLOC: 10.AN5

TOP: Algebra and NumberKEY: ProceduralKnowledge

26. ANS: DPTS: 1DIF:Moderate

REF: 3.6 Polynomialsof theFormax^2 +bx +cLOC: 10.AN4

TOP: Algebra and NumberKEY: ProceduralKnowledge

27. ANS: CPTS: 1DIF:EasyREF: 3.7 MultiplyingPolynomials

LOC: 10.AN4TOP: Algebra and NumberKEY: ProceduralKnowledge

28. ANS: CPTS: 1DIF:EasyREF: 3.7 MultiplyingPolynomials

LOC: 10.AN4TOP: Algebra and NumberKEY: ProceduralKnowledge

29. ANS: DPTS: 1DIF:EasyREF: 3.8 FactoringSpecialPolynomials

LOC: 10.AN5TOP: Algebra and NumberKEY: ProceduralKnowledge

30. ANS: APTS: 1DIF:EasyREF: 3.8 FactoringSpecialPolynomials

LOC: 10.AN5TOP: Algebra and NumberKEY: ProceduralKnowledge

31. ANS: APTS: 1DIF:EasyREF: 3.8 FactoringSpecialPolynomials

LOC: 10.AN5TOP: Algebra and NumberKEY: ProceduralKnowledge

32. ANS: CPTS: 1DIF:EasyREF: 3.8 FactoringSpecialPolynomials

LOC: 10.AN5TOP: Algebra and NumberKEY: ProceduralKnowledge

2

ID:A

33. ANS: BPTS: 1DIF:EasyREF: 3.8 FactoringSpecialPolynomials

LOC: 10.AN5TOP: Algebra and NumberKEY: ProceduralKnowledge

SHORT ANSWER

34. ANS:

w2 −2w−80 =(w+8)(w−10)

PTS: 1DIF:ModerateREF: 3.5 Polynomialsof theFormx^2 +bx +c

LOC: 10.AN5TOP: Algebra and NumberKEY: ProceduralKnowledge

35. ANS:

90y2 +77y −52 =90y2 +117y −40y−52

=9y(10y+13)−4(10y+13)

=(10y+13)(9y−4)

PTS: 1DIF:ModerateREF: 3.6 Polynomialsof theFormax^2 +bx +c

LOC: 10.AN5TOP: Algebra and NumberKEY: ProceduralKnowledge

PROBLEM

36. ANS:

Theprimenumbersbetween 120 and 140 are127, 131, 137, and 139. These areprimenumbersbecause each numberhas exactly2 divisors, 1 and itself.

PTS: 1DIF:ModerateREF: 3.1 Factors and Multiplesof WholeNumbers

LOC: 10.AN1TOP: Algebra and Number

KEY: Communication |Problem-SolvingSkills

3

ID:A

37. ANS:

To calculatehow manytubsofpaint areneeded, firstdetermine the surface areaof the cube.

The edge length,e, ofa cube is equal to the cube rootof itsvolume.

e=3

e=14

2744

The surface area,SA, ofa cube is the sumof the areasof its6 congruent square faces.

SA=6(14⋅14)

SA=6(196)

SA=1176

Calculatehow manytubsofpaint areneeded:

1176=14.8860...

79

Germaineneeds15 tubsofpaint to paint the cube.

PTS: 1 / DIF:ModerateREF: 3.2 PerfectSquares, PerfectCubes, and TheirRoots
LOC: 10.AN1 / TOP: Algebra and NumberKEY: Problem-SolvingSkills
38. / ANS:
8z2 −112z+360

Thegreatest common factor is8.

8z2 −112z+360 =8(z2 −14z+45)

Two numberswith a sumof−14and aproductof45are−5and−9.

So,z2 −14z+45 =(z−5)(z−9)

And,8z2 −112z+360=8(z−5)(z−9)

Checkthat the factors are correct. Multiplythe factors.

8(z−5)(z−9)=8(z2 −14z+45)

=8z2 −112z+360

The trinomial is the same as theoriginal trinomial, so the factors are correct.

PTS: 1DIF:DifficultREF: 3.5 Polynomialsof theFormx^2 +bx +c

LOC: 10.AN5TOP: Algebra and NumberKEY: ProceduralKnowledge

4

ID:A

39. ANS:

Sample answer:

5x2 +17x+6

To factor this trinomial, find factorsof the form(ax+b)(cx+d).

The coefficientofx2 is5, so the coefficientsof the1st terms in thebinomial are factorsof5, which are1 and

5.

So,thebinomialhas the form(x+b)(5x +d).

The constant termin the trinomial is6, so the2nd terms in thebinomial are factorsof6, which are6 and 1, or

2and 3.

So,thebinomials could be:

(x +6)(5x+1)or(x+2)(5x+3)or

(x +1)(5x+6)or(x+3)(5x+2)

Checkwhich of the4 binomialproducts abovehas itsx-termequal to 17x.

(x +6)(5x+1)=5x2 +31x +6(x+2)(5x+3)=5x2 +13x +6(x+1)(5x+6)=5x2 +11x +6(x+3)(5x+2)=5x2 +17x +6

This is the correct trinomial.

So,5x2 +17x+6=(x+3)(5x +2)

PTS: 1DIF:ModerateREF: 3.6 Polynomialsof theFormax^2 +bx +c

LOC: 10.AN5TOP: Algebra and Number

KEY: Communication |Problem-SolvingSkills

5

ID:A

40. ANS:

196x2 −16y2

Aswritten, each termof thebinomial isnotaperfect square. But the termshavea common factor4. Remove this common factor.

196x2 −16y2

=4(49x2 −4y2)

Write each termin thebinomial asaperfect square.

4(49x2 −4y2)=4

ÈÍ

ÎÍÍ

(7x)2 −(2y)2

˘˙

˚˙˙

Write these termsinbinomialfactors.

=4(7x−2y)(7x +2y)

PTS: 1DIF:ModerateREF: 3.8 FactoringSpecialPolynomials

LOC: 10.AN5TOP: Algebra and Number

KEY: Communication |Problem-SolvingSkills

6