HOMEWORK II
VOLATILITY
WINTER 2010
DUE BY 9:00 A.M. SUNDAY
ROBERT ENGLE
1. Use the attached data of daily equity prices of Ford Motor Company (F) starting in 1990. In each case estimate the model with an intercept.
a) Estimate an ARCH(1) model and report the Schwarz information criterion
Dependent Variable: FRETMethod: ML - ARCH (Marquardt) - Normal distribution
Date: 01/09/10 Time: 23:13
Sample (adjusted): 1/04/1990 12/31/2009
Included observations: 5041 after adjustments
Convergence achieved after 8 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2
Coefficient / Std. Error / z-Statistic / Prob.
C / 0.000282 / 0.000256 / 1.101274 / 0.2708
Variance Equation
C / 0.000414 / 6.45E-06 / 64.23625 / 0.0000
RESID(-1)^2 / 0.450907 / 0.014437 / 31.23236 / 0.0000
R-squared / -0.000018 / Mean dependent var / 0.000171
Adjusted R-squared / -0.000415 / S.D. dependent var / 0.026405
S.E. of regression / 0.026410 / Akaike info criterion / -4.600015
Sum squared resid / 3.514035 / Schwarz criterion / -4.596131
Log likelihood / 11597.34 / Hannan-Quinn criter. / -4.598654
Durbin-Watson stat / 1.999719
The Schwartz Criterion for the ARCH(1) model for Ford returns is -4.596131.
b) Estimate an ARCH(9) model and report the Schwarz information criterion
Dependent Variable: FRETMethod: ML - ARCH (Marquardt) - Normal distribution
Date: 01/09/10 Time: 23:15
Sample (adjusted): 1/04/1990 12/31/2009
Included observations: 5041 after adjustments
Convergence achieved after 15 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(
-3)^2 + C(6)*RESID(-4)^2 + C(7)*RESID(-5)^2 + C(8)*RESID(-6)^2 +
C(9)*RESID(-7)^2 + C(10)*RESID(-8)^2 + C(11)*RESID(-9)^2
Coefficient / Std. Error / z-Statistic / Prob.
C / 0.000355 / 0.000285 / 1.243254 / 0.2138
Variance Equation
C / 0.000193 / 7.83E-06 / 24.58570 / 0.0000
RESID(-1)^2 / 0.174879 / 0.014931 / 11.71233 / 0.0000
RESID(-2)^2 / 0.102591 / 0.014655 / 7.000639 / 0.0000
RESID(-3)^2 / 0.095772 / 0.012267 / 7.807378 / 0.0000
RESID(-4)^2 / 0.032087 / 0.013087 / 2.451722 / 0.0142
RESID(-5)^2 / 0.048072 / 0.010469 / 4.591746 / 0.0000
RESID(-6)^2 / 0.094328 / 0.011675 / 8.079778 / 0.0000
RESID(-7)^2 / 0.082416 / 0.013610 / 6.055463 / 0.0000
RESID(-8)^2 / 0.030909 / 0.008725 / 3.542434 / 0.0004
RESID(-9)^2 / 0.042976 / 0.012132 / 3.542209 / 0.0004
R-squared / -0.000048 / Mean dependent var / 0.000171
Adjusted R-squared / -0.002036 / S.D. dependent var / 0.026405
S.E. of regression / 0.026432 / Akaike info criterion / -4.752239
Sum squared resid / 3.514143 / Schwarz criterion / -4.738000
Log likelihood / 11989.02 / Hannan-Quinn criter. / -4.747251
Durbin-Watson stat / 1.999658
The Schwartz Criterion for the ARCH(9) model of Ford returns is -4.738000.
c) Estimate a GARCH(1,1) model and report the Schwarz information criterion
Dependent Variable: FRETMethod: ML - ARCH (Marquardt) - Normal distribution
Date: 01/09/10 Time: 23:17
Sample (adjusted): 1/04/1990 12/31/2009
Included observations: 5041 after adjustments
Convergence achieved after 16 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)
Coefficient / Std. Error / z-Statistic / Prob.
C / 0.000337 / 0.000283 / 1.191466 / 0.2335
Variance Equation
C / 4.39E-06 / 7.39E-07 / 5.935558 / 0.0000
RESID(-1)^2 / 0.049869 / 0.003373 / 14.78515 / 0.0000
GARCH(-1) / 0.943161 / 0.003659 / 257.7927 / 0.0000
R-squared / -0.000039 / Mean dependent var / 0.000171
Adjusted R-squared / -0.000635 / S.D. dependent var / 0.026405
S.E. of regression / 0.026413 / Akaike info criterion / -4.785877
Sum squared resid / 3.514112 / Schwarz criterion / -4.780699
Log likelihood / 12066.80 / Hannan-Quinn criter. / -4.784063
Durbin-Watson stat / 1.999676
The Schwartz Criterion for the GARH(1, 1) model of Ford Returns is -4.780699.
d) Estimate a GARCH(2,1) model and report the Schwarz information criterion
Dependent Variable: FRETMethod: ML - ARCH (Marquardt) - Normal distribution
Date: 01/09/10 Time: 23:18
Sample (adjusted): 1/04/1990 12/31/2009
Included observations: 5041 after adjustments
Convergence achieved after 14 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)
Coefficient / Std. Error / z-Statistic / Prob.
C / 0.000306 / 0.000282 / 1.083042 / 0.2788
Variance Equation
C / 3.30E-06 / 6.50E-07 / 5.071222 / 0.0000
RESID(-1)^2 / 0.125603 / 0.014200 / 8.845128 / 0.0000
RESID(-2)^2 / -0.086713 / 0.014665 / -5.912869 / 0.0000
GARCH(-1) / 0.955725 / 0.003714 / 257.3479 / 0.0000
R-squared / -0.000026 / Mean dependent var / 0.000171
Adjusted R-squared / -0.000820 / S.D. dependent var / 0.026405
S.E. of regression / 0.026416 / Akaike info criterion / -4.790852
Sum squared resid / 3.514065 / Schwarz criterion / -4.784380
Log likelihood / 12080.34 / Hannan-Quinn criter. / -4.788585
Durbin-Watson stat / 1.999703
The Schwartz Criterion for the GARCH(2, 1) model for Ford Returns is -4.784380.
e) Pick another order GARCH model and report the Schwarz criterion
Dependent Variable: FRETMethod: ML - ARCH (Marquardt) - Normal distribution
Date: 01/09/10 Time: 23:36
Sample (adjusted): 1/04/1990 12/31/2009
Included observations: 5041 after adjustments
Convergence achieved after 12 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)
+ C(6)*GARCH(-2)
Coefficient / Std. Error / z-Statistic / Prob.
C / 0.000307 / 0.000282 / 1.085912 / 0.2775
Variance Equation
C / 1.42E-06 / 4.94E-07 / 2.875528 / 0.0040
RESID(-1)^2 / 0.118373 / 0.013095 / 9.039784 / 0.0000
RESID(-2)^2 / -0.101699 / 0.012249 / -8.302711 / 0.0000
GARCH(-1) / 1.442739 / 0.108846 / 13.25487 / 0.0000
GARCH(-2) / -0.461769 / 0.103793 / -4.448942 / 0.0000
R-squared / -0.000026 / Mean dependent var / 0.000171
Adjusted R-squared / -0.001019 / S.D. dependent var / 0.026405
S.E. of regression / 0.026418 / Akaike info criterion / -4.791384
Sum squared resid / 3.514066 / Schwarz criterion / -4.783617
Log likelihood / 12082.68 / Hannan-Quinn criter. / -4.788663
Durbin-Watson stat / 1.999702
The Schwartz Criterion for the GARCH(2, 2) model for Ford Returns is -4.783617.
f) Introduce another lagged or deterministic variable to see if it is significant.
Dependent Variable: FRETMethod: ML - ARCH (Marquardt) - Normal distribution
Date: 01/10/10 Time: 00:14
Sample (adjusted): 1/05/1990 12/31/2009
Included observations: 5040 after adjustments
Convergence achieved after 19 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)
+ C(6)*DJTRET(-1) + C(7)*DJTRET2(-1)
Coefficient / Std. Error / z-Statistic / Prob.
C / 4.91E-05 / 0.000285 / 0.172226 / 0.8633
Variance Equation
C / 4.81E-06 / 8.59E-07 / 5.603862 / 0.0000
RESID(-1)^2 / 0.112331 / 0.014386 / 7.808428 / 0.0000
RESID(-2)^2 / -0.080366 / 0.014566 / -5.517445 / 0.0000
GARCH(-1) / 0.936783 / 0.005785 / 161.9238 / 0.0000
DJTRET(-1) / -0.001178 / 0.000220 / -5.345191 / 0.0000
DJTRET2(-1) / 0.067891 / 0.010221 / 6.642455 / 0.0000
R-squared / -0.000021 / Mean dependent var / 0.000171
Adjusted R-squared / -0.001214 / S.D. dependent var / 0.026407
S.E. of regression / 0.026424 / Akaike info criterion / -4.805174
Sum squared resid / 3.514049 / Schwarz criterion / -4.796111
Log likelihood / 12116.04 / Hannan-Quinn criter. / -4.801998
Durbin-Watson stat / 1.999653
I added in two lagged variables – one representing the first difference of the log price for the Dow Jones Transportation Index and another representing the square of this first difference. The Schwartz Criterion for this model is -4.796111.
Which is preferred?
According to the Schwartz Information Criterion, the model which incorporates the Dow Jones Transportation Average is the preferred model, as it has the lowest value.
Do all of these models satisfy the basic criteria for a good model?
2. For the GARCH(2,1) model, calculate the time series of annualized volatilities. What was the maximum conditional volatility and when did this occur?
3. Test the autocorrelation of the standardized residuals and the squared standardized residuals with 10 lags. Does this model pass both tests? Explain.
4. Report the skewness and kurtosis of the standardized residuals. Compare these with the ford returns.
5. Forecast the next year of daily volatility for ford and plot the result.
6. Reestimate the GARCH(2,1) with student-t distribution. Now what is the Schwarz criterion? Does it find this estimate preferable?
7. Describe the volatility pattern of a GARCH(1,1):
a. When the sum of alpha plus beta is small?
b. When the sum of alpha plus beta is bigger than one?
c. When alpha is small and beta is big with a sum slightly less than one?
d. When alpha is big and beta is small with a sum slightly less than one?