Supplementary Table 1 Main characteristics of the IOCG deposits from the Southern Copper Belt
Sequeirinho-Pista-Baiano / Sossego-Curral / CristalinoReserve / 85% of 355 Mt @ 1.1% Cu, 0.28 g/t Au. (1) / 15% of 355 Mt @ 1.1% Cu, 0.28 g/t Au. (1) / 482 Mt @ 0.65% Cu and 0.06 g/t Au. (5)
Host rocks / Sequeirinho Granite, gabbronorite, Pista felsicmetavolcanic rock. (2) (3) / Sossego granophyric granite, gabbro. (2) (3) / Acid, intermediate and mafic metavolcanic rocks (ItacaiúnasSupergroup), BIF and the Cristalino Diorite. (6)
Hydrothermal alteration / a) Na (albite-hematite) alteration; b) Na-Ca (albite-actinolite) alteration associated with magnetite-apatite formation; c) poorly developed K and chlorite alteration; d)late Ca alteration (actinolite-chlorite-epidote-allanite-apatite-(monazite) ** (2) / a) Poorly developed Na- and Na-Ca- alteration; b) well-developed K (biotite-magnetite) and chlorite alteration; c) late alteration (calcite–quartz–chlorite–epidote–allanite **andmuscovite-hematite alteration. (2) / a) Na (albite-scapolite) alteration; b) K (biotite and Kfs) and chlorite alteration; c) magnetite formation; d)chlorite-epidote-carbonate-apatite alteration**; e) minor sericite, tourmaline and allanite formation. (6)
Ore morphology / Breccia, disseminations along mylonitic foliation, veins and stockworkbreccias. (2) / Subvertical breccia pipes, veins. (2) / Breccia, stockwork, fractures, along foliation and disseminations. (6)
Ore mineralogy / Chalcopyrite, magnetite, pyrrhotite, pyrite, and minor molybdenite, sphalerite, siegenite, millerite, gold, Pd-melonite, galena, cassiterite and hessite. (2) / Chalcopyrite, magnetite, pyrite, and minor siegenite, millerite, hessite, Pd-melonite, molybdenite, gold and cassiterite. (2) / Chalcopyrite, pyrite, magnetite, bravoite, cobaltite, millerite, vaesite and gold. (6)
Geochemical signature of ore / Cu- Fe- Au- Ni- Co- Pd- Se- V- P- LHEE, with low content of Ti and U. Relatively enriched in Co, Ni, Pd, V, and Se in comparison to Sossego-Curral. (4) / Cu- Fe- Au- Ni- Co- Pd- Se- V- P- LHEE. Relatively enriched in Au, Pb, Sn, Rb, Y, and Nb in comparison to Sequeirinho-Pista-Baiano. (4) / Cu- Fe- Co- Ni- Ba- Pb- K e P. (7)
Fluid inclusions (T=°C; salinity =wt% eq. NaCl) / Na-Ca stage: Ti= -76 to -63 (L-V-S) and -63 to -53 (L-V); TH (s)LV-L= 122 to 229 (LVS), and 116 to 250 (L-V); Salinity= 29 to 53 (L-V-S) and 3 to > 23 (LV). (4) / Ore stage: Ti= -65 (L-V-S) and -66 to -45 (L-V); TH (s)LV-L= 102 to 312 (L-V); Salinity= 26 to 70 (L-V-S) and 0.2 to > 23 (LV). (4) / Absent
Stable isotopes: O in silicates and oxides (%°) / Early alteration stages: higher T fluids (> 550°C), and δ18Ofluid = 6.9; Ore stage: lower T fluids (~300°C), and δ18Ofluid = 1.8. (2) / Early alteration stages: higher T fluids (400°C), and δ18Ofluid=5.5 to 8.4; Ore stage: lower T fluids (~275°C), and δ18Ofluid = 0.4 to 1.9. (2) / Absent
Stable isotopes: O (SMOW) and C (PDB) in carbonates (%°) / Ore breccia: δ13C = -6.44 to -4.77; δ18O = 5.6 to 7.43; δ18Ofluid = -2.6 to 1.9; δ13CH2CO3= -6.1 to -3.4 (T=230°C). (2) / Ore breccia: δ13C = -6.03 to -4.73; δ18O = 5.12 to 8.46; δ18Ofluid = -0.6 to 4.5; δ13CH2CO3= -4.8 to -2.7 (T=275°C). (2) / Ore breccia: δ13C = -7.2 to -4.8; δ18O = 8.2 to 9.3. (7)
Stable isotopes: H in silicates (%°) / Na-Ca stage: δDfluid = -50 to -34 (T=550°C); Ore stage: δDfluid = -47 to -37 (actinolite; T=400 °C). (2) / Ore stage: δDfluid = -67 to -36 (actinolite; T=400°C); Post mineralization stage: -40 to -30 (chlorite; T=250°C). (2) / Absent
Stable isotopes: S (CDT) in sulfides (%°) / Ore zone: δ34S= 2.2 to 6.1. (2) / Ore zone: δ34S= 3.8 to 7.6. (2) / Ore zone: δ34S= 0.6 to 1.5. (7)
Geochronology (ages in Ma) / 2,710 ± 11, molybdenite (Re-Os TIMS); 2,712 ± 4.7, hydrothermalore-relatedmonazite (U-Pb LA-MC-ICP-MS). (3) / 1,879 ± 4.1; 1,890 ± 8.5 and 1,904 ± 5.2, hydrothermal ore-related monazite (U-Pb LA-MC-ICP-MS). (3) / 2,700 ± 29, chalcopyrite and pyrite from the ore breccia (Pb-Pb leaching) (8)
Supplementary Table 1 (continued)
Alvo 118 / Bacaba / CastanhaReserve / 170 Mt @ Cu e 0.3 g/t Au. (9) / Absent / Absent
Host rocks / Mafic and felsic metavolcanic rocks, tonalite and gabbro. (10) (11) / Serra Dourada Granite, BacabaTonalite, and gabbro (locally porphyritic). (13) (14) / Castanha quartz-feldspar porphyry and gabbro. (16)
Hydrothermal alteration / a) Poorly developed Na alteration; b) intense K alteration and Iron oxide formation; c) well-developed chlorite alteration and chlorite-epidote-calcite-quartz formation**. (11) / a) Well-developed Na (scapolite) alteration; b) iron oxide formation; c) K alteration (biotite and Kfs); d) Chlorite and epidote alteration**. (13) (14) / a) Na (albite and scapolite) alteration; b) well-developed Na-Ca and magnetite formation; c) K (biotite and Kfs) and chlorite alteration; d) sericiteand carbonate formation**. (16)
Ore morphology / Breccia,veins, stockwork. (11) / Veins and replacement zones related to mylonitic foliation. (13) (14) / Veins, veinlets, stockwork, and structurally controlled breccia. (16)
Ore mineralogy / Chalcopyrite, hematite > magnetite, bornite, pyrite. (11) / Chalcopyrite, bornite, covellite, chalcocite, magnetite, hematite, and minor melonite, hessite, altaite, uraninite, cassiterite, and ferberite. (13) / Chalcopyrite, pyrrhotite, pyrite, magnetite, pentlandite, sphalerite, molybdenite, and marcasite. (16)
Geochemical signature of ore / Fe- Cu- Au- Ag- Y- Ni- Sn- Be- Co- REE- Pb- U- Bi. (12) / Cu- Fe- Co- Ni- LREE- P- Y- Yb- U. (13) (14) / Cu- Fe- Ni- Co- Zn- Mo. (16)
Fluid inclusions (T=°C; salinity =wt% eq. NaCl) / Ti= -61 to -40 (L-V-S) and -40 to -17 (L-V); TH (s)LV-L= 219 to 330 (LVS), and 127 to 257 (L-V); Salinity= 33 to 40 (L-V-S) and 1 to 14 (LV). (11) / Post alt K: Ti= 1) -79 to -62, 2) -79 to -63, 3) -73 to -65; TH (s)LV-L= 1) 162 to 210, 3) 145 to 175; Salinity= 1) 11 to54, 2) 30 to 36, 3) 13 to 20. (15) / Early stage: TH (s)LV-L= 179 to 278 (LVS); Late stage: Ti= -72 to -59 (L-V-S) and -65 to -45 (L-V); TH (s)LV-L= 101 to 414 (LVS), and 66 to 257 (L-V); Salinity= 22 to 34. (18)
Stable isotopes: O in silicates and oxides (%°) / Absent / Carbonate alt: δ18Ofluid= 1.3 to 10.8 (T=225°C); K alt: δ18Ofluid= 4.8 to 7.2 (T=420-450°C); Sericite alt: δ18Ofluid= 2 to 7.8 (T=370°C). (16) / Carbonate alt: δ18Ofluid= 4.2 to 8.9 (T=400°C); Na-Ca alt: δ18Ofluid= 7.2 to 8.2 (T=345°C); K alt: δ18Ofluid= 4.9 to 8.4 (T=440-525°C); Sericite alt: δ18Ofluid= 3.9 to 9 (T=500-525°C). (16)
Stable isotopes: O (SMOW) and C (PDB) in carbonates (%°) / Ore breccia: δ13C = -8.1 to -5; δ18O = 4.9 to 16.5; Ore veins: δ13C = -7.3 to -4.3; δ18O = 6.2 to 7.9; barren samples: δ13C = -7.5 to -1.7; δ18O = 3.9 to 9; δ18Ofluid responsible for Cu-Au ore = -1 to 7.5. (11) / Carbonate alt: δ13C = -5.9 to -3.63; δ18O = 8.31 to 17.33; δ13CH2CO3= -4.9 to -2.7 (T=225°C). (16) / Carbonate alt: δ13C = -7.01 to -3.34; δ18O = 8.07 to 10.88; δ13CH2CO3= -4.6 to -0.9 (T=400°C). (16)
Stable isotopes: H in silicates (%°) / Absent / K alt: δDfluid = -62 to -40 (T=420°C); Sericite alt: δDfluid = -25 to -9 (T=370°C). (16) / Na-Ca alt: δDfluid = -74 to -70 (T=345°C); K alt: δDfluid = -62 to -52 (T=440-525°C); Sericite alt: δDfluid = -57 to -53 (T=525°C). (16)
Stable isotopes: S (CDT) in sulfides (%°) / Ore zone: δ34S= 5.1 to 6.3. (11) / Ore zone: δ34S= 1.3 to 5.4. (16) / Ore zone: δ34S= 0.1 to 3. (16)
Geochronology (ages in Ma) / 1,868 ± 7; hydrothermal ore-related xenotime (U-Pb SHRIMP). (10) / 2,720 ± 15 (hydrothermal monazite associated with Na alteration); 2,681 ± 20, hydrothermal ore-related monazite (U-Pb LA-MC-ICP-MS). (17) / Absent
Supplementary Table 1 (continued)
Bacuri / ViscondeReserve / Absent / Absent
Host rocks / Serra Dourada Granite, Bacuri porphyryandgabbro. (19) / Serra Dourada Granite, felsic subvolcanic rock, mafic volcanic and intrusive rock, and meta-ultramafic rock. (20)
Hydrothermal alteration / a) Na (albite-scapolite-magnetite);b) K alteration (biotite-Kfs-magnetite); c) Chlorite (well developed), epidote and quartz formation**; d) late muscovite-hematite(19) / a) Na alteration; b) Na-Ca alteration (well-developed) and magnetite formation; c) K and chlorite alteration**; d)carbonate formation. (20)
Ore morphology / Disseminations, along mylonitic foliation, veins and veinlets. (19) / Breccia, veins and veinlets, disseminations. (20)
Ore mineralogy / Chalcopyrite, magnetite, pyrite, melonite, altaite, galene and cheralite. (19) / Chalcopyrite, bornite, pyrite, magnetite, chalcocite, digenite, molybdenite, magnesite. (20)
Geochemical signature of ore / Cu- Fe- Ni- Pb- Te- Th- P. (19) / Cu- Fe- REE- Ni- Co- Mo- Ca- P- Mg- Nb- Tb- Y- Zn- SE- Au. (20)
Fluid inclusions (T=°C; salinity =wt% eq. NaCl) / Absent / Na-Ca alt: TH (s)LV-L= 160-480, salinity= 25-58; Late stage I: TH (s)LV-L= 160-350, salinity= 8-30; Late stage II: TH (s)LV-L= <300, salinity= 6-19. (20)
Stable isotopes: O in silicates and oxides (%°) / Absent / Absent
Stable isotopes: O (SMOW) and C (PDB) in carbonates (%°) / Absent / Absent
Stable isotopes: H in silicates (%°) / Absent / Absent
Stable isotopes: S (CDT) in sulfides (%°) / Ore zone: δ34S= 0.8 to 1.1. (16) / Ore zone: δ34S= 1.5. (16)
Geochronology (ages in Ma) / 2,758 ± 11, molybdenite (Re-OS TIMS); 2,703 ± 6.2, hydrothermal monazite associated with chlorite alteration (U-Pb LA-MC-ICP-MS). (17) / 2,747 ± 140, chalcopyrite from the ore breccia (Pb-Pb leaching). (21)
(1) Lancaster Oliveira et al. 2000; (2) Monteiro et al. 2008a; (3) Moreto et al.accepted; (4) Carvalho 2009; (5) NCL Brasil 2005;(6) Huhn et al. 1999b; (7) Ribeiro 2008; (8) Soares et al. 2001; (9) Rigon et al. 2000; (10) Tallarico 2003; (11) Torresi et al. 2012; (12) Moreto et al. 2009; (13) Augusto et al. 2008; (14) Moreto et al. 2011; (15) Melo 2010; (16) Pestilho 2011; (17) Moreto et al.thisstudy; (18) Pestilho 2008; (19) Melo et al.2014; (20) Craveiro 2011; (21) Silva et al. 2012.
** Stage of hydrothermal alteration related to the Cu mineralization