9th Grade Biology

Term 4

Term introduction

In Term 4 we will study the theory of evolution. This theory states that current organisms descended from a common ancestor. It is understood that these organisms descended with some modification. Several sources of evidence are used to explain and support the theory of evolution including, similarities in DNA sequences of different organisms, homologous structures and fossil record. Charles Darwin’s trip to the Galapagos Islands provides some of the most important evidence of in support of evolution. We will conclude the term by exploring the currently help theories of the origin of life.

Term 4 Topic

Evolution

Skills list

Evolution (EV)

7. The frequency of an allele in a gene pool of a population depends on many factors:

a. natural selection acts on the phenotype rather than the genotype of an organism.

b. alleles that are lethal in a homozygous individual may be carried in a heterozygote.

c. new mutations are constantly being generated in a gene pool.

d. variation increases the likelihood of survival under changed environmental conditions.

e. conditions for Hardy-Weinberg equilibrium are not likely to appear in nature.

f. Hardy-Weinberg equation predicts the frequency of genotypes in a population.

8. Evolution is the result of genetic changes that occur in constantly changing environments:

a. natural selection determines the differential survival of groups of organisms.

b. diversity of species increases the chance that some organisms survive changes in the environment.

c. genetic drift affects diversity of organisms in a population.

d. reproductive or geographic isolation affects speciation.

e. fossil evidence are analyzed for biological diversity, episodic speciation, and mass extinction.

f. cladogram shows probable evolutionary relationships.

g. molecular clocks help to estimate how long ago various groups of organisms diverged evolutionarily from one another.

Investigation and Experimentation (IE)

10. Scientific progress is made by asking meaningful questions and conducting careful investigations:

a. Select and use appropriate tools and to perform tests, collect data, analyze relationships, and display data.

b. Identify and communicate sources of unavoidable experimental error.

c. Identify possible reasons for inconsistent results, such as sources of error.

d. Formulate explanations by using logic and evidence.

e. Solve scientific problems by using quadratic equations and simple trigonometric, exponential, and logarithmic functions.

f. Distinguish between hypothesis and theory as scientific terms.

g. Recognize the usefulness and limitations of models and theories

h. Read and interpret topographic and geologic maps.

i. Analyze the locations, sequences, or time intervals that are characteristic of natural phenomena

j. Recognize the issues of statistical variability and the need for controlled tests.

k. Recognize the cumulative nature of scientific evidence.

l. Analyze situations and solve problems by applying concepts from more than one area of science.

m. Investigate a science-based societal issue by researching the literature, analyzing data, and communicating the findings.

n. when an observation does not agree with an accepted scientific theory, the observation is sometimes mistaken

Essential questions

How does information flow from DNA to RNA to direct the synthesis of proteins?

How does RNA differ from DNA?

How does the cell make RNA?

What was Charles Darwin’s contribution to science?

What three patterns of biodiversity did Darwin note?

What did Hutton and Lyell conclude about Earth’s history?

How did Lamarck propose that species evolve?

What was Malthus’s view of population growth?

Under what conditions does natural selection occur?

How do fossils help to document the descent of modern species from ancient ancestors?

What do homologous structures and similarities in embryonic development suggest about the process of evolutionary change?

How is evolution defined in genetic terms?

What are the sources of genetic variation?

How are DNA sequences used in classification?

What characteristics do all primates share?

What is the goal of evolutionary classification?

What is a cladogram?

Reference Materials

Levine, J. and Miller, K. Biology. (2010: Pearson, Prentice Hall, New Jersey)

(Textbook and Study Workbook)

Day-by-Day

Day 1-2: Charles Darwin

Goal: Learn about Charles Darwin’s contribution to science.

Activity:Charles Darwin’s trip to the Galapagos Islands

Standards: Evolution is the result of genetic changes that occur in constantly changing environments (8.a-d)

Essential Question: What was Charles Darwin’s contribution to science?

Day 3-4: Biodiversity

Goal: Understand the patterns of biodiversity

Activity: In class worksheet activity

Standards:The frequency of an allele in a gene pool of a population depends on many factors: (7.d, e)

Essential Question: What three patterns of biodiversity did Darwin note?

Day 5-6: History of life on Earth

Goal: understand Hutton and Lyell’s conclusions about the conditions of early Earth

Activity: Video and worksheet

Standards: Scientific progress is made by asking meaningful questions and conducting careful investigations (10.a-n)

Essential Question: What did Hutton and Lyell conclude about Earth’s history?

Day 7: Quiz#, Speciation

Goal: Understanding the fundamentals of evolution

Activity:speciation worksheet activity

Standards: Standards:The frequency of an allele in a gene pool of a population depends on many factors (7a-f)

Essential Question: How did Lamarck propose that species evolve?

Day 8: Population Growth

Goal: Learn about factors that limit population growth

Activity: Graph and chart activity.

Standards: The frequency of an allele in a gene pool of a population depends on many factors (7a-f)

Essential Question: What was Malthus’s view of population growth?

Day 9: Natural Selection

Goal: Natural selection is the underlying cause of evolution

Activity: Lab Activity, Natural Selection

Standards: Scientific progress is made by asking meaningful questions and conducting careful investigations (10.a-n)

Essential Question: Under what conditions does natural selection occur?

Day 10: Fossils

Goal: Understand how fossils help document history of life on earth

Activity: Radiometric Dating

Standards: Evolution is the result of genetic changes that occur in constantly changing environments (8.a-d)

Essential Question: How do fossils help to document the descent of modern species from ancient ancestors?

Day 11: Quiz #2

Day 12: Homologues Structures

Goal: Learn how homologous structures in different species support evolution

Activity: Lecture, video and solving multiple choice questions.

Standards:The frequency of an allele in a gene pool of a population depends on many factors (7a-f)

Essential Question: What do homologous structures and similarities in embryonic development suggest about the process of evolutionary change?

Day 13: Microevolution

Goal:Learn how Genetics can help explain evolution

Activity: Lab Activity; Genetic and evolution lab

Standards: Standards:Evolution is the result of genetic changes that occur in constantly changing environments (8.a-d). Scientific progress is made by asking meaningful questions and conducting careful investigations (10.a-n)

Essential Question: How is evolution defined in genetic terms?

Day 14: Selective Breading

Goal: Learn how specific trains can be artificially selected

Activity: Selecting for desirable traits in selective breading

Standards:Evolution is the result of genetic changes that occur in constantly changing environments (8.a-d)

Essential Question: What are the sources of genetic variation?

Day 15: Human Inheritance

Goal: Learn how a cladogram and a Pedigree can help us understand heredity

Activity: Taxonomy Lab Activity

Standards:Evolution is the result of genetic changes that occur in constantly changing environments (8.a-d). Scientific progress is made by asking meaningful questions and conducting careful investigations (10.a-n)

Essential Question: What is the goal of evolutionary classification?

Day 16: Quiz #3

Day 17: Viruses

Goal: Understand Viruses and how they infect animals and plants

Activity: Viruses work sheet

Standards: The frequency of an allele in a gene pool of a population depends on many factors (7a-f)

Essential Question: What is a virus?

Day 18: Project Presentation

Grading breakdown:

Quizzes: 20%

Lab: 30% (10% pre-lab and 20% Lab report/activity)

Homework 10%

Project 10%

Final 20%

Participation 10%

Term 4 Biology Project.

Working in groups of 2, design an original model of any biological system, macromolecules or molecules that have been covered during the past 3 terms. Be sure to follow the scientific method in your design and presentation.

You need to get your model topic approved by March 17th 2015

Project Rubric

Evidence of weekly progress 50%

-write down 2 or more paragraphs of what you did as part of your project during the past week

-Show pictures of your research work

Final Presentation 50%

Lab Report Outline and Rubric

Name Partner’s Name

Class/Section

Date

Title of Lab Report

Introduction:

Background information from note book, class notes, text, etc. – Try to tie it together

Key concepts, terms

Purpose of lab activity (20 points)

Materials:

List of key materials that you used during the activity (5 points)

Methods:

A brief, numbered list of steps as to what you completed in the lab

No results should be placed here (5 points)

Results:

Should be presented in a neat, concise and orderly fashion

Data tables in lab manual should be recreated and placed here. Each table should be numbered and have an appropriate label and title

Include appropriate units

No interpretations should be placed here

Percent Error and mathematical calculations should appear here when necessary (10 points)

Discussion:

What did the lab results show? What were some of your thoughts/hypotheses when this activity started? Were they validated? Explain using examples. Did this have a tie in with what was being discussed in class? Was the purpose accomplished? Reasons for error?

(20 points)

Works Cited

Cite all the sources you used in your report. (10 points)

Questions must be Typed and Answered Correctly (30 points)

Homework

All homework must have a name, date and class (A, B or C). It is a point deduction for each missing item.

Homework is due on Tuesday during Lab.

Late homework will only be accepted up to a week after due date.

Late homework will be accepted but with a 10% deduction.

Assessment Homework and Quizzes

Text Book Homework / Pages / Due date / Quizzes
Evolution of Populations / Assessment 17.1, 17.2,17.3 and 17.4 / March 17
March 23/24 / Quiz 1
Classification / Assessment 18.1, 18.2 and 18.3 / April 07
April 13/14 / Quiz 2
Viruses and Prokaryotes / Assessment 20.1, 20.2 and 20.3 / April 21
April 27/28 / Quiz 3
April 30-May 01 / Project Presentation
May 04 / Final Assignment Due

Science Skills:

1.  Observing - using your senses to gather information about an object or event. It is description of what was actually perceived. This information is considered qualitative data.

2.  Designing Experiments and Constructing Models–using acquired information from observations to design a scientific experiment and constructing models.

3.  Testing Hypotheses- formulating a testable hypothesis using “if/then” statements or other similar statements

4.  Measuring - using standard measures or estimations to describe specific dimensions of an object or event. This information is considered quantitative data.

5.  Inferring - formulating assumptions or possible explanations based upon observations.

6.  Classifying - grouping or ordering objects or events into categories based upon characteristics or defined criteria.

7.  Predicting - guessing the most likely outcome of a future event based upon a pattern of evidence.

8.  Communicating - using words, symbols, or graphics to describe an object, action or event.