Supporting Information

“Simulation of aromatic polycyclic hydrocarbons remobilization from a river sediment using laboratory experiments supported by passive sampling techniques”

Angel BELLESa,*, Yannick MAMINDY-PAJANYa, Claire ALARYa

a- Ecole des Mines de Douai, Department of Civil and Environmental Engineering, 764 Boulevard Lahure, 59500 Douai, France.

*Corresponding author:

Tel: +33327712675 ;Fax: +33327712916

E-mail address:

Content: The supporting information contains 12 pages including this one.

S1. Sediment extraction method inspired from EPA method SW-846 3545A

S2. Selected, partitioning constant of PAH for SR and PE

S3.Solid phase micro extraction (SPME) method

S4. GC/MS parameters

S5. Recovery and detection limits of the analytical procedure (SPME and passive samplers)

S6. Individual PAH water concentration evolution during suspension simulation (derived from passive samplers)

S7. Individual PAH water concentration evolution during suspension simulation (derived from SPME analysis)

S8. Time evolution of PAH concentration in water derived from passive sampler (bold line) and SPME methodology (diamond).

1

S1.Sediment extraction method.

PAH extractions from sediment (n=3) wereperformed according to EPA method SW-846 3545A using ASE Dionex 200. In-cell clean up is combined with the classical extraction procedure to avoid gel permeation chromatography purification step. 33 mL cells are filled with 10 g of alumina (precleaned/activated at 350°C over night). 1g of prepared sediment (freez-dried,ball milled and sieved to 250 µm) were dispersed in 30 g of precleaned sand and loaded in the extraction cell. Sample was extracted using dichloromethane at 125 °C and 1500 psi (10 MPa) 12 min with 40 mL. Collected extractswere subsequently spiked with internal standards and sulfur was removed by addition of 2g of activated copper powder. Extracts were finally concentrated with nitrogen evaporator and solvent was changed to 2,2,4-trimethylpentane reduced to 200 µL for GC/MS analysis.

1

S2.Selected properties of PAH used to implement concentration determination of PAH with PS(log Kow, log KPEand log KSR).

Log Kowa / Log KPEb / Log KSRc
Compounds / L kg-1 / L kg-1
Naphthalene / 3.37 / 3.26 / 3.03
Acenaphtylene / 4.00 / 3.65 / 3.26
Acenaphthene / 3.92 / 3.82 / 3.62
Fluorene / 4.18 / 3.99 / 3.79
Phenanthrene / 4.57 / 4.33 / 4.11
Anthracene / 4.54 / 4.47 / 4.21
Fluoranthene / 5.22 / 4.82 / 4.62
Pyrene / 5.18 / 4.90 / 4.68
Benzo[a]anthracene / 5.91 / 5.66 / 5.32
Chrysene / 5.86 / 5.50 / 5.25
Benzo[b]fluoranthene +
Benzo[k]fluoranthene / 5.90 / 5.66 / 5.74
Benzo[a]pyrene / 6.04 / 5.82 / 5.69
Indeno[1,2,3-cd]pyrene / 6.50 / 6.35 / 6.06
Benzo[g,h,i]perylene / 6.50 / 6.42 / 6.02
Dibenz[a,h]anthracene / 6.75 / 6.33 / 6.24

a log Kowadopted from Mackay et al. (1992)

b log KPEadopted from Lohman et al. (2012)

c Log KSRadopted from Smedes et al. (2009)

1

S3. Solid Phase Micro Extraction (SPME) method

SPME analysis was conducted on 9 mL samples of water contained in 10 mL vial using a 65 µm PDMS/DVB (Polydimethylsiloxane/Divinylbenzene) coated fiber. After 5 min incubation period of the sample at 50°C, the fiber is immersed in the liquid fraction during 60 min at 50°C under mixing. After extraction, the fiber is retracted back and immediately thermally desorbed in the injection port of the GC/MS. All operation were automatically realized with the support of CTC PAL Combi-xt autosampler. Chromatographic determination is conducted as liquid injections. Before extraction, fiber is conditioned during 30 min at 250 °C in the injection port of the GC/MS and aqueous artificial sample are analyzed to determine the response factor needed to perform quantification relatively to surrogate internal standards added to the samples before SPME extraction.

1

S4.GC Agilent 7890B series chromatographic separation conditions and MS Agilent 5977 mass detector parameters

Quantified analytes / Internal standards of PS spiked with PRC / Internal standards of PS without PRC, SPME and sediment extracted by ASE
Compounds / Quantifier
ion (m/z) / Qualifier ion (m/z) / Internal
standard / Quantifier
ion (m/z) / Qualifier ion (m/z) / Internal
standard / Quantifier
ion (m/z) / Qualifier ion (m/z)
Native PAH / Nap / 128 / 127 / Nap-d8 / 136 / 153 / Nap-d8 / 136 / 153
Acy / 152 / 153 / Acy-d8 / 160 / 161 / Acy-d8 / 160 / 161
Ace / 154 / 153 / Acy-d8 / 160 / 161 / Ace-d10 / 164 / 163
Flu / 166 / 165 / Flu-d10 / 176 / 175 / Flu-d10 / 176 / 175
Phe / 178 / 176 / Phe-d10 / 188 / 186 / Phe-d10 / 188 / 186
Ant / 178 / 176 / Flu-d10 / 176 / 175 / Ant-d10 / 188 / 186
Fla / 202 / 200 / Fla-d10 / 212 / 210 / Fla-d10 / 212 / 210
Pyr / 202 / 200 / Pyr-d10 / 212 / 210 / Pyr-d10 / 212 / 210
BaA / 228 / 226 / Chr-d12 / 240 / 238 / BaA-d12 / 240 / 265
Chr / 228 / 226 / Chr-d12 / 240 / 238 / Chr-d12 / 240 / 238
Bb+kF / 252 / 263 / BbF-d12 / 264 / 265 / BbF-d12 / 264 / 265
BaP / 252 / 263 / Chr-d12 / 240 / 238 / BaP-d12 / 264 / 265
IP / 276 / 138 / BP-d12 / 288 / 144 / BP-d12 / 288 / 144
BP / 276 / 138 / BP-d12 / 288 / 144 / BP-d12 / 288 / 144
DBA / 278 / 139 / BP-d12 / 288 / 144 / DBA-d14 / 292 / 146
PRC / Ace-d10 / 164 / 163 / Acy-d8 / 160 / 161
Ant-d10 / 188 / 186 / Phe-d10 / 188 / 186
BaA-d12 / 240 / 238 / Chr-d12 / 240 / 238
BaP-d12 / 264 / 265 / BbF-d12 / 264 / 265
DBA-d14 / 292 / 146 / BP-d12 / 288 / 144

Nap = Naphthalene, Acy = Acenaphthylene, Ace = Acenaphthene, Flu = Fluorene, Phe = Phenanthrene, Ant = Anthracene, Fla = Fluoranthene, Pyr = Pyrene, BaA = Benzo[a]anthracene, Chr = Chrysene, Bb+kF = Benzo[b]fluoranthene + Benzo[k]fluoranthene, BaP = Benzo[a]pyrene, IP = Indeno[1,2,3-cd]pyrene, BP = Benzo[g,h,i]perylene, DBA = Dibenzo[a,h]anthracene.

Samples were analyzed with a gas chromatograph (GC) coupled to a mass spectrometer (MS) (GC Agilent 7890B, MS Agilent 5977A Xtr EI detector). The injector temperature was maintained at 300 °C. 1 µL of liquid sample (dissolved in 2,2,4-trimethylpentane) was injected via pulsed-splitless mode using Helium as carrier gas at 1.3 mL min-1 (constant flow rate). Separation of analytes was achieved using an HP-5ms UI capillary column (30 m × 0.25 mm i.d. × 0.25 µm film thickness). The temperature program started at 55 °C and was held for 0.5 min, was then increased at the rate of 10 °C min-1 to 300 °C and kept isothermal for 1 min. The GC-MS transfer line temperature was set at 300 °C. The mass selective detector was used in the electron impact ionization mode. The signal was collected using an ionization energy of 70 eV, with a consigned source temperature of 350 °C and a quadrupole temperature of 180 °C. Detection is operated in SIM mode using molecular ions of PAH for quantification and one additional ion to attest identification. Quantification was performed by using the responses relatively to surrogate internal standards. The internal standard calibration used certified standard solutions of native and isotopically labelled PAH.

1

S5.Recovery and detection limits of the analytical procedure (SPME and passive samplers)

SPME / Passive samplers / Sediment
Compounds / Recoverya
(%) / LODb
(ng L-1) / Rejectionc
criterion
threshold (ng L-1) / Recovery
(%) / LODd
(pg L-1) / Rejectionc
criterion
threshold (ng L-1) / CRM recovery
SRM 1944 (%)
Nap / 92 / 0.21 / 0.90 / 100 / 21.3 / 0.10 / 89
Acy / 96 / 0.28 / ND / 92 / 7.0 / 0.25 / 92
Ace / 97 / 0.11 / ND / 95 / 14.1 / 0.05 / 85
Flu / 98 / 0.09 / 0.18 / 97 / 4.4 / 0.10 / 87
Phe / 99 / 0.09 / 0.32 / 99 / 1.1 / 0.07 / 104
Ant / 100 / 0.10 / 0.12 / 98 / 1.2 / 0.03 / 103
Fla / 98 / 0.03 / 0.25 / 100 / 1.1 / 0.09 / 88
Pyr / 99 / 0.09 / 0.58 / 101 / 1.2 / 0.08 / 94
BaA / 95 / 0.06 / 0.10 / 98 / 0.3 / 0.06 / 105
Chr / 94 / 0.07 / ND / 96 / 0.3 / 0.02 / 99
Bb+kF / 92 / 0.08 / 0.30 / 95 / 1.4 / 0.01 / 92
BaP / 91 / 0.07 / 0.42 / 97 / 1.5 / 0.01 / 103
IP / 85 / 0.09 / 0.21 / 91 / 5.7 / 0.005 / 89
BP / 87 / 0.09 / 0.18 / 99 / 6.0 / 0.07 / 96
DBA / 82 / 0.08 / 0.35 / 92 / 4.2 / 0.09 / 102

aRecovery rates of artificial samples receiving collection, filtration and extraction treatments (n=3)

bLimits of detection obtained from 5 concentration levels of artificial samples (100, 50, 10, 5 and 1 ng L-1)

cRejection criterion discards all results below the threshold of 10 times the averaged observed blank level

dAveragedlimits of detection taking into account sampling rates and exposure periods of our devices.

1

S6. Individual PAH water concentration evolution during suspension simulation derived from passive samplers (ng L-1). Data are presented as value ± standard deviation (half equilibration time). ND: non-defined value because below the detection limit or abovethe ten blank level acceptability criterion.

T0-T10 / T10-T21 / T0-T21 / T21-T29
Sampling
tank number / 1 / 2 / 1 / 2 / 1 / 2 / 1 / 2
Nap / 2.2 ± 0 (1) / 2.6 ± 0 (1) / ND (1) / 2.6 ± 0 (0) / 3.5 ± 0 (0) / 2.1 ± 0 (1) / ND (0) / 4.1 ± 0 (0)
Acy / ND (1) / ND (1) / ND (1) / ND (1) / ND (1) / ND (1) / ND (1) / ND (1)
Ace / 4.7 ± 0.1 (2) / 2.3 ± 0.1 (3) / 2.2 ± 0 (2) / 2.3 ± 0 (2) / 2.5 ± 0 (2) / 2.4 ± 0 (3) / 6.1 ± 0.1 (2) / 6.5 ± 0.1 (2)
Flu / 4.8 ± 0.1 (4) / 2.7 ± 0.2 (4) / 3.2 ± 0.1 (4) / 2.7 ± 0 (3) / 3.8 ± 0 (3) / 2.7 ± 0 (4) / 6.3 ± 0.1 (3) / 5.9 ± 0.1 (3)
Phe / 7.4 ± 0.4 (8) / 3.9 ± 0.5 (9) / 4.1 ± 0.2 (8) / 3.9 ± 0.1 (7) / 4.4 ± 0.1 (7) / 4 ± 0.1 (10) / 7.2 ± 0.3 (7) / 6.7 ± 0.2 (6)
Ant / 1.1 ± 0.1 (10) / 0.3 ± 0.1 (11) / 0.5 ± 0 (10) / 0.3 ± 0 (8) / 0.5 ± 0 (8) / 0.4 ± 0 (12) / 1.3 ± 0.1 (9) / 1.3 ± 0.1 (8)
Fla / 6.6 ± 0.5 (27) / 2.6 ± 0.6 (31) / 2.5 ± 0.2 (26) / 2.6 ± 0.1 (23) / 3.7 ± 0.2 (23) / 3.6 ± 0.2 (33) / 10.4 ± 0.5 (24) / 10.6 ± 0.5 (21)
Pyr / 4.9 ± 0.4 (31) / 1.9 ± 0.5 (35) / 1.8 ± 0.1 (30) / 1.9 ± 0.1 (26) / 2.8 ± 0.2 (26) / 2.7 ± 0.2 (37) / 7.6 ± 0.4 (27) / 7.8 ± 0.4 (24)
BaA / 1.1 ± 0.1 (149) / 0.3 ± 0.1 (172) / 0.3 ± 0 (145) / 0.3 ± 0 (127) / 0.6 ± 0 (126) / 0.6 ± 0 (181) / 1.6 ± 0.1 (132) / 1.6 ± 0.1 (116)
Chr / 1.9 ± 0.2 (121) / 0.6 ± 0.2 (139) / 0.5 ± 0 (118) / 0.6 ± 0 (103) / 1 ± 0.1 (102) / 1.1 ± 0.1 (147) / 2.7 ± 0.1 (107) / 2.7 ± 0.1 (95)
Bb+kF / 0.5 ± 0 (392) / 0.1 ± 0 (451) / 0 ± 0 (382) / 0.1 ± 0 (335) / 0.2 ± 0 (331) / 0.1 ± 0 (477) / ND (347) / 0.4 ± 0 (306)
BaP / 0.3 ± 0 (349) / ND (402) / ND (340) / ND (299) / ND (295) / ND (425) / ND (310) / ND (273)
IP / 0.5 ± 0 (854) / ND (984) / 0.2 ± 0 (833) / ND (730) / 0.2 ± 0 (722) / ND (1041) / ND (757) / 1.5 ± 0.1 (668)
BP / 0.5 ± 0 (779) / 0.4 ± 0 (898) / 0.2 ± 0 (759) / 0.4 ± 0 (666) / 0.3 ± 0 (659) / ND (949) / ND (691) / 1.1 ± 0.1 (609)
DBA / 0.4 ± 0 (1297) / 0.4 ± 0 (1495) / ND (1265) / 0.4 ± 0 (1109) / 0.4 ± 0 (1097) / ND (1580) / ND (1150) / ND (1014)
∑HAP16 / 37 / 18 / 17 / 18 / 24 / 20 / 43 / 50
T29-T38 / T21-T38 / T38-T46 / T38-T46
Sampling
tank number / 1 / 2 / 1 / 2 / 1 / 2 / 1 / 2
Nap / 2.5 ± 0 (0) / 2.5 ± 0 (0) / 4.4 ± 0 (0) / 2.5 ± 0 (1) / 2.5 ± 0 (0) / 1.8 ± 0 (1) / 4 ± 0 (0) / 1.7 ± 0 (1)
Acy / ND (1) / ND (1) / ND (1) / ND (1) / ND (1) / ND (1) / 1.2 ± 0 (1) / ND (1)
Ace / 13.8 ± 0 (2) / 12.7 ± 0 (1) / 10.8 ± 0 (2) / 14.5 ± 0.1 (3) / 1.5 ± 0 (2) / 1.6 ± 0.1 (3) / 0.3 ± 0 (2) / 1.5 ± 0 (2)
Flu / 11.8 ± 0.1 (2) / 10.3 ± 0.1 (2) / 10.2 ± 0.1 (3) / 11.9 ± 0.2 (4) / 1.6 ± 0 (3) / 1.8 ± 0.1 (4) / 1.7 ± 0.1 (3) / 1.7 ± 0.1 (3)
Phe / 19.1 ± 0.4 (5) / 16.9 ± 0.2 (5) / 15.3 ± 0.4 (6) / 16.9 ± 0.7 (8) / 2.1 ± 0.1 (7) / 2.2 ± 0.2 (9) / 2 ± 0.2 (7) / 2.2 ± 0.1 (7)
Ant / 4.2 ± 0.1 (6) / 3.7 ± 0.1 (6) / 3.2 ± 0.1 (8) / 3.4 ± 0.2 (11) / 0.5 ± 0 (8) / 0.4 ± 0 (11) / 0.6 ± 0.1 (9) / 0.6 ± 0 (9)
Fla / 22.1 ± 0.7 (18) / 19.8 ± 0.5 (16) / 17.7 ± 1.1 (21) / 18.4 ± 1.3 (29) / 7.9 ± 0.6 (23) / 7.3 ± 1 (30) / 7.9 ± 0.8 (23) / 7.9 ± 0.6 (26)
Pyr / 15.8 ± 0.5 (20) / 14.1 ± 0.4 (18) / 13.1 ± 0.8 (24) / 13.2 ± 1 (33) / 5.2 ± 0.4 (26) / 4.7 ± 0.6 (35) / 5.1 ± 0.6 (27) / 5.1 ± 0.4 (30)
BaA / 3.4 ± 0.1 (99) / 2.9 ± 0.1 (89) / 2.5 ± 0.2 (117) / 2.9 ± 0.2 (162) / 2.1 ± 0.2 (127) / 2.1 ± 0.3 (168) / 2.7 ± 0.3 (129) / 2.5 ± 0.2 (143)
Chr / 6.2 ± 0.2 (80) / 5 ± 0.1 (72) / 4.5 ± 0.3 (95) / 4.9 ± 0.4 (131) / 3.8 ± 0.3 (103) / 3.6 ± 0.5 (137) / 5.2 ± 0.6 (105) / 4.1 ± 0.3 (116)
Bb+kF / 0.5 ± 0 (259) / 0.1 ± 0 (235) / ND (307) / 0.2 ± 0 (425) / 0.3 ± 0 (335) / ND (443) / ND (339) / 0.3 ± 0 (376)
BaP / 0.3 ± 0 (231) / ND (209) / ND (274) / 0.5 ± 0 (379) / 0.4 ± 0 (299) / ND (395) / ND (302) / ND (335)
IP / ND (565) / ND (512) / ND (670) / 0.2 ± 0 (927) / ND (731) / ND (966) / ND (740) / 0.4 ± 0 (820)
BP / 0.2 ± 0 (515) / 1.9 ± 0.1 (467) / ND (611) / 0.3 ± 0 (846) / 0.2 ± 0 (666) / ND (881) / ND (675) / 0.4 ± 0 (748)
DBA / ND (858) / ND (777) / ND (1017) / ND (1409) / ND (1110) / ND (1467) / ND (1124) / ND (1245)
∑HAP16 / 100 / 90 / 82 / 90 / 28 / 26 / 30 / 29

Nap = Naphthalene, Acy = Acenaphthylene, Ace = Acenaphthene, Flu = Fluorene, Phe = Phenanthrene, Ant = Anthracene, Fla = Fluoranthene, Pyr = Pyrene, BaA = Benzo[a]anthracene, Chr = Chrysene, Bb+kF = Benzo[b]fluoranthene + Benzo[k]fluoranthene, BaP = Benzo[a]pyrene, IP = Indeno[1,2,3-cd]pyrene, BP = Benzo[g,h,i]perylene, DBA = Dibenzo[a,h]anthracene.

1

S7. Individual PAH water concentration evolution during suspension simulation derived from SPME analysis (ng L-1). ND: non-defined value because below the detection limit or below the ten blank level acceptability criterion.

time (d) / 3.0 / 4.0 / 11.0 / 14.0 / 16.0 / 18.0 / 18.0 / 23.8 / 25.4 / 28.6 / 29.4 / 29.5 / 29.5 / 29.5 / 29.6 / 29.7 / 29.7 / 29.8
Nap / 19 / 16 / 12 / 17 / 16 / 16 / 13 / 16 / 20 / 15 / 15 / 12 / 264 / 260 / 259 / 250 / 231 / 212
ACE / 4 / 3 / 3 / 2 / 1 / 2 / 11 / 10 / 9 / 5 / 3 / 3 / 205 / 339 / 332 / 353 / 293 / 321
Acy / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 5 / 1 / 7 / 8 / 0 / 7
Flu / 6 / 4 / 4 / 3 / 3 / 3 / 18 / 9 / 9 / 5 / 6 / 7 / 170 / 226 / 230 / 237 / 235 / 233
Ant / 1 / 0 / 0 / 0 / 0 / 0 / 0 / 1 / 1 / 1 / 0 / 0 / 3 / 26 / 26 / 28 / 0 / 25
Phe / 12 / 8 / 7 / 8 / 6 / 6 / 21 / 12 / 10 / 7 / 6 / 6 / 83 / 124 / 112 / 123 / 0 / 125
Pyr / 6 / 4 / 3 / 3 / 3 / 2 / 0 / 5 / 12 / 4 / 3 / 2 / 20 / 27 / 20 / 22 / 12 / 17
Fla / 9 / 5 / 5 / 4 / 4 / 4 / 0 / 8 / 16 / 6 / 3 / 2 / 25 / 25 / 25 / 28 / 14 / 22
Chr / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
BaA / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
BbF / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
BaP / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
DBA / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
BGP / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
IP / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
∑HAP / 57 / 40 / 34 / 37 / 33 / 33 / 63 / 61 / 77 / 43 / 36 / 32 / 775 / 1028 / 1011 / 1049 / 785 / 962
time (d) / 29.8 / 30.4 / 30.4 / 31.6 / 31.6 / 32.4 / 35.4 / 35.4 / 36.8 / 37.4 / 37.6 / 38.8 / 39.4 / 42.8 / 42.8 / 43.6 / 44.4
Nap / 144 / 76 / 70 / 39 / 19 / 22 / 15 / 33 / 22 / 10 / 22 / 14 / 6 / 12 / 23 / 27 / 15
ACE / 253 / 100 / 0 / 64 / 20 / 10 / 5 / 4 / 3 / 2 / 4 / 0 / 24 / 2 / 11 / 0 / 1
Acy / 0 / 0 / 9 / 0 / 1 / 3 / 1 / 1 / 1 / 0 / 1 / 0 / 0 / 1 / 5 / 4 / 2
Flu / 208 / 105 / 0 / 67 / 24 / 19 / 6 / 7 / 6 / 3 / 7 / 6 / 32 / 4 / 11 / 4 / 2
Ant / 0 / 0 / 5 / 0 / 2 / 0 / 1 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0
Phe / 139 / 0 / 121 / 0 / 27 / 19 / 8 / 6 / 5 / 6 / 6 / 18 / 0 / 11 / 11 / 5 / 6
Pyr / 0 / 0 / 14 / 0 / 16 / 7 / 0 / 6 / 5 / 0 / 4 / 0 / 0 / 5 / 4 / 4 / 6
Fla / 0 / 0 / 21 / 0 / 21 / 13 / 26 / 8 / 7 / 17 / 7 / 0 / 0 / 9 / 6 / 5 / 9
Chr / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
BaA / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
BbF / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
BaP / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
DBA / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
BGP / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
IP / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND / ND
∑HAP / 744 / 281 / 240 / 170 / 130 / 93 / 62 / 65 / 49 / 38 / 51 / 38 / 62 / 44 / 71 / 49 / 41

Nap = Naphthalene, Acy = Acenaphthylene, Ace = Acenaphthene, Flu = Fluorene, Phe = Phenanthrene, Ant = Anthracene, Fla = Fluoranthene, Pyr = Pyrene, BaA = Benzo[a]anthracene, Chr = Chrysene, Bb+kF = Benzo[b]fluoranthene + Benzo[k]fluoranthene, BaP = Benzo[a]pyrene, IP = Indeno[1,2,3-cd]pyrene, BP = Benzo[g,h,i]perylene, DBA = Dibenzo[a,h]anthracene.

S8. Time evolution of PAH concentration in water derived from passive sampler (bold line) and SPME methodology (diamond).

1

Literature cited

Lohmann R, (2012) Critical Review of Low-Density Polyethylene’s Partitioning and Diffusion Coefficients for Trace Organic Contaminants and Implications for Its Use As a Passive Sampler. Environ Sci Technol, 46:606-618. doi: 10.1021/es202702y

Mackay D, Shiu W, Ma K (1992) Illustrated Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals. vol. II. Lewis Publishers, Chelsea

Smedes F, Geertsma RW, van der Zande T, Booij K (2009) Polymer−Water Partition Coefficients of Hydrophobic Compounds for Passive Sampling: Application of Cosolvent Models for Validation. Environ Sci Technol, 43:7047-7054. doi: 10.1021/es9009376

1