MATH 3170 6.00 A SU 2012

Solutions to selected problems from Sections 9.2, 9.3 and 9.4.

9.2.12

Let y1 = 1 if NY is used, y2 = 1 if LA is used, y3 = 1 if Chicago is used, y4 = 1 if Atlanta is used. Also yi = 0 if city i is not used. Define xij = units shipped from warehouse in city i to region j

min z = 400y1 + 500y2 + 300y3 + 150y4 + 20x11 + 40x12 + 50x13 + 48x21 + 15x22 + 26x23 + 26x31 + 35x32 + 18x33 + 24x41 + 50x42 +35x43

st x11 + x21 + x31 + x41³80, x12 + x22 + x32 + x42³70

x13 + x23 + x33 + x43³40, x11 + x12 + x13£100y1

x21 + x22 + x23£100y2, x31 + x32 + x33£100y3,

x41 + x42 + x43£100y4, y1£y2, y2 + y4³1,

y1 + y2 + y3 + y4£2 , All xij³0, all yi = 0 or 1.

9.2.20

The question does not specifically disallow assigning two reps to the same state, and so it is possible to have that happen. However, in an optimal solution, that will never happen (why?). Therefore, the following formulation assumes that no two reps can be assigned to the same state. Let AB = 1 if a rep is assigned to states A and B, etc.

MAX 72 AB + 85 AC + 50 BD + 85 BE + 63 CD + 77 DE + 92 DG + 74 EF

+ 89 FG + 71 BC + 39 DF

SUBJECT TO

2) AB + AC + BD + BE + CD + DE + DG + EF + FG + BC + DF = 2

3) AB + AC £ 1

4) AB + BD + BE + BC £ 1

5) AC + CD + BC £ 1

6) BD + CD + DE + DG + DF £ 1

7) BE + DE + EF £ 1

8) DG + FG £ 1

9) EF + FG + DF £ 1

END

INTE 11

Here is an alternate solution. This formulation allows assigning two reps to one state and let the optimization take care of it. Let xij=1 if rep #i is assigned to state j, and 0 otherwise (i=1,2; j=A,B,…,G). Let yj=1 if state j has a rep, and 0 otherwise (j=A,B,…,G).

MAX 43yA + 29yB + 42yC + 21yD + 56yE + 18yF + 71yG

ST

xiA + xiB + xiC + xiD + xiE + xiF + xiG = 2

xiA + xiD £ 1

xiA + xiE £ 1

xiA + xiF £ 1

xiA + xiG £ 1

xiB + xiF £ 1

xiB + xiG £ 1

xiC + xiE £ 1

xiC + xiF £ 1

xiC + xiG £ 1

xiE + xiG £ 1

(for each i=1,2)

0.5(x1j+x2j) £ yj £ x1j+x2j

(for each j=A,B,…,G)

Each xij and yj is 0 or 1

9.2.21

Let xij = number of air conditioners (in thousands) produced in city i for region j (i = 1 is NY, j = 1 is East, etc.). Also let yj = 1 if factory is operated in city j, yj = 0 otherwise. Then the appropriate IP is (z is in thousands of dollars):

min z = 6000y1 + 5500y2 + 5800y3 +6200y4 + 206x11 + 225x12 + 230x13 +290x14 + 225x21 + 206x22 + 221x23 + 270x24 + 230x31 + 221x32 + 208x33 + 262x34 + 290x41 + 270x42 + 262x43 + 215x44

st x11 + x21 + x31 + x41³100 (East)

x12 + x22 + x32 + x42³150 (South)

x13 + x23 + x33 + x43³110 (Midwest)

x14 + x24 + x34 + x44³90 (West)

x11 + x12 + x13 + x14£150y1 (NY)

x21 + x22 + x23 + x24£150y2 (Atl)

x31 + x32 + x33 + x34£150y3 (Chic)

x41 + x42 + x43 + x44£150y4 (LA)

(Either x13³50 or x23³50)

50 - x13£50z

50 - x23£50(1 - z)

All xij integer; z, all yi = 0 or 1

9.2.23

Let Xij = 1 if machine i is used to do job j and Xij = 0 otherwise. Also let Yi = 1 if machine i is used at all and Yi = 0 otherwise.

MIN 42 X11 + 70 X12 + 93 X13 + 85 X22 + 45 X23 + 58 X31 + 37 X34 + 58 X41 + 55 X43 + 38 X45 + 60 X52 + 54 X54 + 30 Y1 + 40 Y2 + 50 Y3 + 60 Y4 + 20 Y5

SUBJECT TO

X11 + X31 + X41 = 1

X12 + X22 + X52 = 1

X13 + X23 + X43 = 1

X34 + X54 = 1

X45 = 1

X11 + X12 + X13 - 3 Y1 <= 0

X22 + X23 - 2 Y2 <= 0

X31 + X34 - 2 Y3 <= 0

X41 + X43 + X45 - 3 Y4 <= 0

X52 + X54 - 2 Y5 <= 0

Each Xij and Yi is 0 or 1

9.2.25

Let Region 1 = SE, Region 2 = NE, Region 3 = FW, Region 4 = MW, and let FF = Bank 1, R = Bank 2, PF = Bank 3, and B = Bank 4. Define xij = daily amount of checks for region i sent from bank j, and let yj = 1 if bank j is used and yj = 0 if bank j is not used. Then the appropriate IP is

max z = 1.05x11 + .30x12 + .90x13 + .75x14 + 1.2x21 + .60x22 + .75x23 + .45x24 + .60x31 + 1.2x32 + .30x33 + 1.65x34 + .75x41 +.60x42 + 1.05x43 + .75x44

50,000y1 40,000y2 30,000y3 20,000y4

st. x11 + x12 + x13 + x14 = 40,000

x21 + x22 + x23 + x24 = 60,000

x31 + x32 + x33 + x34 = 30,000

x41 + x42 + x43 + x44 = 50,000

x11 + x21 + x31 + x41£90,000y1

x12 + x22 + x32 + x42£90,000y2

x13 + x23 + x33 + x43£90,000y3

x14 + x24 + x34 + x44£90,000y4

xij³0, yj = 0 or 1

To understand the objective function observe that if x11 = 1, then each day $7 remains in the bank and earns interest for the Clearinghouse. Thus on an annual basis x11 =1 "earns"

Clearinghouse 7(.15) = $1.05. This explains the term 1.05x11 in

the objective function.

9.3.2

We wish to solve min z = 50x1 + 100x2

st 7x1 + 2x2³28

2x1 + 12x2³24

x1, x2³0

SP 1

Note: In solving subproblems we have used the result discussed in Problem 8 to conclude that in each subproblem's optimal solution the "newest" constraint must be binding. Thus we know that some optimal solution to SP2 will have x1 = 4.

The two optimal solutions x1 = 6, x2 = 1 and x1 = 4 , x2 = 2 have been found.

9.3.7

9.3.9

9a. Letting It = inventory at end of period t yields given LINDO printout (20 branches).

MIN 250 Y1 + 250 Y2 + 250 Y3 + 250 Y4 + 250 Y5 + 2 X1 + 2 X2 + 2 X3

+ 2 X4 + 2 X5 + I1 + I2 + I3 + I4 + I5

SUBJECT TO

2) - 1270 Y1 + X1 <= 0

3) - 1270 Y2 + X2 <= 0

4) - 1270 Y3 + X3 <= 0

5) - 1270 Y4 + X4 <= 0

6) - 1270 Y5 + X5 <= 0

7) - X1 + I1 = - 220

8) - X2 - I1 + I2 = - 280

9) - X3 - I2 + I3 = - 360

10) - X4 - I3 + I4 = - 140

11) - X5 - I4 + I5 = - 270

END

INTE 5

OBJECTIVE FUNCTION VALUE

1) 3680.000

VARIABLE VALUE REDUCED COST

Y1 1.000000 250.000000

Y2 1.000000 250.000000

Y3 1.000000 250.000000

Y4 0.000000 -1020.000000

Y5 1.000000 250.000000

X1 220.000000 0.000000

X2 280.000000 0.000000

X3 500.000000 0.000000

X4 0.000000 0.000000

X5 270.000000 0.000000

I1 0.000000 1.000000

I2 0.000000 1.000000

I3 140.000000 0.000000

I4 0.000000 2.000000

I5 0.000000 3.000000

9b. See attached LINDO printout . (LP solution yields optimal solution!!

MIN 250 Y1 + 250 Y2 + 250 Y3 + 250 Y4 + 250 Y5 + 2 X11 + 3 X12

+ 4 X13 + 5 X14 + 6 X15 + 2 X22 + 3 X23 + 4 X24 + 5 X25 + 2 X33 + 3 X34

+ 4 X35 + 2 X44 + 3 X45 + 2 X55

SUBJECT TO

2) X11 = 220

3) X12 + X22 = 280

4) X13 + X23 + X33 = 360

5) X14 + X24 + X34 + X44 = 140

6) X15 + X25 + X35 + X45 + X55 = 270

7) - 220 Y1 + X11 <= 0

8) - 280 Y1 + X12 <= 0

9) - 360 Y1 + X13 <= 0

10) - 140 Y1 + X14 <= 0

11) - 270 Y1 + X15 <= 0

12) - 280 Y2 + X22 <= 0

13) - 360 Y2 + X23 <= 0

14) - 140 Y2 + X24 <= 0

15) - 270 Y2 + X25 <= 0

16) - 360 Y3 + X33 <= 0

17) - 140 Y3 + X34 <= 0

18) - 270 Y3 + X35 <= 0

19) - 140 Y4 + X44 <= 0

20) - 270 Y4 + X45 <= 0

21) - 270 Y5 + X55 <= 0

END

INTE 5

OBJECTIVE FUNCTION VALUE

1) 3680.000

VARIABLE VALUE REDUCED COST

Y1 1.000000 250.000000

Y2 1.000000 -30.000000

Y3 1.000000 250.000000

Y4 0.000000 110.000000

Y5 1.000000 250.000000

X11 220.000000 0.000000

X12 0.000000 0.000000

X13 0.000000 2.000000

X14 0.000000 2.000000

X15 0.000000 4.000000

X22 280.000000 0.000000

X23 0.000000 1.000000

X24 0.000000 1.000000

X25 0.000000 3.000000

X33 360.000000 0.000000

X34 140.000000 0.000000

X35 0.000000 2.000000

X44 0.000000 0.000000

X45 0.000000 1.000000

X55 270.000000 0.000000

9c. Part (b) is faster.

9d. There are many fractional solutions for the Yi's that are feasible in LP relaxation for (9a) but not for (9b). For example, 1/1270<Y1<1/220 could yield a feasible solution with X11>0 for part (9a) but not for part (9b).Thus (9a) has a "bigger" feasible region to search and will take longer than (9b). Actually it has been shown that when solved as an LP the solution to (9b) will always yield integer values for the variables.

9.4.1

9.4.3