1. Cesar Plaza, N. S., Alfredo Polo, Gennaro Brunetti and (2005). "Acid−Base Properties of Humic and Fulvic Acids Formed during Composting." Environmental Science & Technology 39 (18): 7141-7146.
  2. Charles, M. B., R. Ryan, et al. (2007). "Public policy and biofuels: The way forward?" Energy Policy 35(11): 5737-5746.
  3. Cook, R. L., Langford, Cooper H (1998). "Structural characterization of a fulvic acid and a humic acid using solid-state ramp-CP-MAS super(13)C nuclear magnetic resonance." Environmental Science & Technology 32(5): 719-725.
  4. D.S Mejkalova, R. S., A. Piccolo (2008). "Multivariate analysis of CPMAS 13C-NMR spectra of soils and humic matter as a tool to evaluate organic carbon quality in natural systems." European Journal of Soil Science 59: 496–504.
  5. Daniel, R. (2004). "The soil metagenome - a rich resource for the discovery of novel natural products." Current Opinion in Biotechnology 15(3): 199-204.
  6. Deacon, L. J., E. Janie Pryce-Miller, et al. (2006). "Diversity and function of decomposer fungi from a grassland soil." Soil Biology and Biochemistry 38(1): 7-20.
  7. Don L. Crawford, R. L. C. (1976 ). "Microbial Degradation of Lignocellulose: the Lignin Component." Appl Environ Microbiol 31(5): 714-717.
  8. E.Benitez, H. S., R.Melgar, R. Nogales ( 2002). "Vermicomposting of a lignocellulosic waste from olive oil industry: A pilot scale study." Waste Management Research 20: 134 - 142.
  9. Foster, R. C. (1988). "Microenvironments of soil microorganisms." Biology and Fertility of Soils 6(3): 189-203.
  10. G. Ait Baddib, J. C., G. Merlina c, J.C. Revel c, M. Hafidia (2009). "Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste–wheat straw mixture." Journal of Hazardous Materials 165: 1119–1123.
  11. Hinsinger, P., A. Bengough, et al. (2009). "Rhizosphere: biophysics, biogeochemistry and ecological relevance." Plant and Soil 321(1): 117-152.
  12. Hoekman, S. K. (2009). "Biofuels in the U.S. - Challenges and Opportunities." Renewable Energy 34(1): 14-22.
  13. J. RYCKEBOER, J. M., K. VAES, S. KLAMMER, D. DE CLERCQ, J. COOSEMANS, H. INSAM, J. SWINGS (2003). "A survey of bacteria and fungi occurring during composting and self-heating processes." Annals of Microbiology 53 (4): 349-410.
  14. Kirishima, A., T. Ohnishi, et al. (2009). "Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique." Talanta 79(2): 446-453.
  15. Koh, L. P. and J. Ghazoul (2008). "Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities." Biological Conservation 141(10): 2450-2460.
  16. Kovalev, I. and N. Kovaleva (2008). "Biochemistry of lignin in soils of periodic excessive moistening (from the Example of Agrogray Soils in Opolie Landscapes of the Russian Plain)." Eurasian Soil Science 41(10): 1066-1076.
  17. Ladygina, N., E. G. Dedyukhina, et al. (2006). "A review on microbial synthesis of hydrocarbons." Process Biochemistry 41(5): 1001-1014.
  18. Lal, R. (2008). "Crop residues as soil amendments and feedstock for bioethanol production." Waste Management 28(4): 747-758.
  19. Lang, E., G. Eller, et al. (1997). "Lignocellulose Decomposition and Production of Ligninolytic Enzymes During Interaction of White Rot Fungi with Soil Microorganisms." Microbial Ecology 34(1): 1-10.
  20. Lynch, J. M., J. H. Slater, et al. (1981). "Cellulase Activities of Some Aerobic Micro-organisms Isolated from Soil." J Gen Microbiol 127(2): 231-236.
  21. Martens, D. A. (2002). "Relationship Between Plant Phenolic Acids Released during Soil Mineralization and Aggregate Stabilization." Soil Sci SocAm J 66: 1857-1867.
  22. Mayende, L., B. S. Wilhelmi, et al. (2006). "Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus spp. isolated from compost." Soil Biology and Biochemistry 38(9): 2963-2966.
  23. Mosier, N., C. Wyman, et al. (2005). "Features of promising technologies for pretreatment of lignocellulosic biomass." Bioresource Technology 96(6): 673-686.
  24. O'Donnell, A. G., I. M. Young, et al. (2007). "Visualization, modelling and prediction in soil microbiology." Nat Rev Micro 5(9): 689-699.
  25. Rivero, C., N. Senesi, et al. (1998). "Characteristics of humic acids of some Venezuelan soils." Geoderma 81(3-4): 227-239.
  26. Ronald Hatfield, W. V. (2001). "Lignin Formation in Plants. The Dilemma of Linkage Specificity." Plant Physiol 126: 1351-1357.
  27. Schwarz, W. H. (2001). "The cellulosome and cellulose degradation by anaerobic bacteria." Applied Microbiology and Biotechnology 56(5): 634-649.
  28. Singh, D. and S. Chen (2008). "The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes." Applied Microbiology and Biotechnology 81(3): 399-417.
  29. Sun, Y. and J. Cheng (2002). "Hydrolysis of lignocellulosic materials for ethanol production: a review." Bioresource Technology 83(1): 1-11.
  30. Tiquia, S. M. (2005). "Microbiological parameters as indicators of compost maturity." Journal of Applied Microbiology 99: 816-828.
  31. Tisdall, J. (1994). "Possible role of soil microorganisms in aggregation in soils." Plant and Soil 159(1): 115-121.
  32. Torsvik, V. and L. Øvreås (2002). "Microbial diversity and function in soil: from genes to ecosystems." Current Opinion in Microbiology 5(3): 240-245.
  33. Tuomela, M., M. Vikman, et al. (2000). "Biodegradation of lignin in a compost environment: a review." Bioresource Technology 72(2): 169-183.
  34. van der Laak, W. W. M., R. P. J. M. Raven, et al. (2007). "Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies." Energy Policy 35(6): 3213-3225.
  35. Vanholme, R., K. Morreel, et al. (2008). "Lignin engineering." Current Opinion in Plant Biology 11(3): 278-285.
  36. Weng, J.-K., X. Li, et al. (2008). "Emerging strategies of lignin engineering and degradation for cellulosic biofuel production." Current Opinion in Biotechnology 19(2): 166-172.
  37. A.A. El-Hanafy, H. E. A.-E., Elsayed E. Hafez (2007). "Fingerprinting for the Lignin Degrading Bacteria from the Soil." Journal of Applied Sciences Research 3(6): 470-475.
  38. Gilardi, G., L. Abis, et al. (1995). "Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation." Enzyme and Microbial Technology 17(3): 268-275.
  39. Hill, G. T., N. A. Mitkowski, et al. (2000). "Methods for assessing the composition and diversity of soil microbial communities." Applied Soil Ecology 15(1): 25-36.
  40. Howard R.L, A. E., Jansen van Rensburg E.L, Howard S (2003). "Lignocellulose biotechnology: issues of bioconversion and enzyme production." African Journal of Biotechnology 2(12): 602-619.
  41. Kruse, A. (2009). "Hydrothermal biomass gasification." The Journal of Supercritical Fluids 47(3): 391-399.
  42. kuhad, R. C. (1993). "Lignocellulose Biotechnology:current and Future Prospects." critical reviews in Biotechnology 13(2): 151-172.
  43. Lang, E., G. Eller, et al. (1997). "Lignocellulose Decomposition and Production of Ligninolytic Enzymes During Interaction of White Rot Fungi with Soil Microorganisms." Microbial Ecology 34(1): 1-10.
  44. Lee, J. (1997). "Biological conversion of lignocellulosic biomass to ethanol." Journal of Biotechnology 56(1): 1-24.
  45. López, M. J., M. A. Elorrieta, et al. (2002). "The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi." Bioresource Technology 81(2): 123-129.
  46. Lynch, J. M., J. H. Slater, et al. (1981). "Cellulase Activities of Some Aerobic Micro-organisms Isolated from Soil." J Gen Microbiol 127(2): 231-236.
  47. Lynd, L. R. (1996). "OVERVIEW AND EVALUATION OF FUEL ETHANOL FROM CELLULOSIC BIOMASS: Technology, Economics, the Environment, and Policy." Annual Review of Energy and the Environment 21(1): 403-465.
  48. Mansur M, S. T., Fernandez Larrea JB, Brizuela MA, Gonzalez AE (1997). "Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197." Appl Environ Microbiol 63(7): 2637-46.
  49. Mosier, N., C. Wyman, et al. (2005). "Features of promising technologies for pretreatment of lignocellulosic biomass." Bioresource Technology 96(6): 673-686.
  50. O'Donnell, A. G., I. M. Young, et al. (2007). "Visualization, modelling and prediction in soil microbiology." Nat Rev Micro 5(9): 689-699.
  51. Potthoff, M., K. L. Steenwerth, et al. (2006). "Soil microbial community composition as affected by restoration practices in California grassland." Soil Biology and Biochemistry 38(7): 1851-1860.
  52. Ramos, L. P. (2003). "The chemistry involved in the steam treatment of lignocellulosic materials." Química Nova 26: 863-871.
  53. Sánchez, C. "Lignocellulosic residues: Biodegradation and bioconversion by fungi." Biotechnology Advances 27(2): 185-194.
  54. Sun, Y. and J. Cheng (2002). "Hydrolysis of lignocellulosic materials for ethanol production: a review." Bioresource Technology 83(1): 1-11.
  55. Tuomela, M., M. Vikman, et al. (2000). "Biodegradation of lignin in a compost environment: a review." Bioresource Technology 72(2): 169-183.
  56. Várhegyi, G., M. J. Antal, et al. (1997). "Kinetic modeling of biomass pyrolysis." Journal of Analytical and Applied Pyrolysis 42(1): 73-87.
  57. Zaldivar, J., J. Nielsen, et al. (2001). "Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration." Applied Microbiology and Biotechnology 56(1): 17-34.