-8-

HAEF IB - MATH HL

TEST 4

Trigonometry

Date: 25 January 2018

by Christos Nikolaidis

Paper 1: Without GDC

Name:______

Questions

1. [Maximum mark: 5]

Use the formula for to find the exact value of.

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

2. [Maximum mark: 4]

Given that , find the exact value of .

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......


3. [Maximum mark: 5]

Solve the equation

,

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

4. [Maximum mark: 7]

(a)  Write down the minimum and the maximum value of the expression

[1 mark]

(b)  Solve the equation

, [6 marks]

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

5. [Maximum mark: 5]

Consider a right-angled triangle ABC with and sides ,, . Given that , and are in arithmetic progression, find the exact values of and .

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......


6. [Maximum mark: 14]

(a) Show that

[2 marks]

(b) Hence prove, by mathematical induction, that

for all [7 marks]

(c) Hence solve the equation

in the interval [5 marks]

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

-8-

Paper 2: With GDC

Name:______

Questions

1. [Maximum mark: 5]

In a triangle ABC, =0.5 radians, AB=50cm, AC=40cm. Find the possible values of angle and the smallest possible area of the triangle ABC. [5 marks]

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

2. [Maximum mark: 6]

A ship sails from port A on a bearing of 070o for 50 km and reaches point B. From B, it changes its course and sails on a bearing of 010o for another 50 km to point C. Find

(a)  The distance of port A to point C. [4 marks]

(b)  The bearing of point C from port A. [2 marks]

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

3. [Maximum mark: 6]

The following three-dimensional diagram shows a vertical flagpole AD on horizontal ground. The angles of elevation of the top D from the points B and C are 40o and 35o respectively.

Given that BC = 50m and find the height of the flagpole.

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......


4. [Maximum mark: 7]

Consider the circle with center O and radius r, as in the follwing diagram. The lines (AB) and (AC) are tagent to the circle at B and C respectively. Let

(a)  Show that the area quadrilateral ABOC is [3 marks]

(b)  Given that the area of the shaded region is equal to the area of the sector OBDC,

find the value of angle θ in degrees. [4 marks]

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

5. [Maximum mark: 10]

Consider two intersecting circles with radii 6 and 11 respectively, as in the diagram below. The distance between their centres A and B is 13. The line segment MN is tangent to both circles.

Find

(a)  The length of the line segment MN. [2 marks]

(b)  The size of the angle ABN [2 marks]

(c)  The total area of the region covered by the two circles (shaded region). [6 marks]

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

6. [Maximum mark: 6]

(a)  Show that [4 marks]

(b)  Hence find the exact value of [2 marks]

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......