REFERENCES
References
[Abe01] Abelin, A.; Allwood, J.: Department of Linguistics, Göteborg University. In ICSA Workshop on Speech and Emotion. Belfast, 2001.
[Aha91] Aha , D. W.; Kibler, D.; Albert, M. K.: Instance based learning algorithms. Machine Learning, 6:37–66, 1991.
[Alm92] Almuallim, H.; Dietterich, T.G.: Learning with many irrelevant features. In Proceedings of 9th National Conference on Artificial Intelligence, MIT Press, Cambridge, Massachusetts, 547–552, 1992.
[Alt99] Alter K.; Rank E.; Kotz S.A.; Pfeifer E.; Besson M.; Friederici A.D.; Matiasek J.: On the relations of semantic and acoustic properties of emotions. In Proceedings of the 14th International Conference of Phonetic Sciences (ICPhS-99), San Francisco, California, p.2121, 1999.
[Alt00] Alter, K.; Rank, E.; Kotz, S.A.; Toepel, U.; Besson, M.; Schirmer, A.; Friederici, A.D.: Accentuation and emotions – Two different systems? In ICSA Workshop on Speech and Emotion. Belfast, 2000.
[Ami00] Amir, N.; Ron, S.; Laor, N.: Analysis of an emotional speech corpus in Hebrew based on objective criteria. ICSA Workshop on Speech and Emotion. Belfast, 2000.
[Ami01] Amir, N.: Classifying emotions in speech: a comparison of methods. Holon Academic Institute of technology, EUROSPEECH 2001, Escandinavia.
[Ban96] Bance, R.; Scherer, K.: Acoustic Profiles in Vocal Emotion expression, in Journal of Personality and Social Psychology, 1996.
[Bat00] Batliner, Anton; Fischer, Kerstin; Huber, Richard; Spilker, Jörg; Nöth, Elmar: Desperately Seeking Emotions: Actors, Wizards, and Human Beings. In: Proceedings of the ISCA-Workshop on Speech and Emotion. Belfast, 2000.
[Bob88] Bobrowski, L.: Feature selection based on some homogeneity coefficient. In Proceedings of 9th International Conference on Pattern Recognition, 544–546, 1988.
[Boe93] Boersma, Paul.: Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound", Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam 17: 97-110. 1993.
[Bra65] Bracewell, R. N.: The Fourier Transform and Its Applications, New York: McGraw-Hill Book Company, 1965.
[Bre83] Brenner, M.; Shipp, T.; Doherty, E.; Morrisey, P.: Voice Measures of Physiological Stress – Laboratory field data. In Titze & Scherer (Eds.): Vocal Fold Physiology: Biomechanics, Acoustics, and Phonatory Control. Dencer, Colorado, USA. 1983.
[Bri96] Breiman, L.: Machine Learning. Bagging predictors 1996.
[Cah90] Cahn, J. E.: Generating expression in synthesized speech. Technical Report Boston: MIT Media Lab. 1990.
[Cam00] Campbell, N.: Databases of Emotional Speech. In Cowie, R. Douglas-Cowie, E. & Schröder, M. (Eds.) Proceedings of the ICSA Workshop on Speech and Emotion. Belfast, 2000.
[Cam01] Campbell, N.: Building a corpus of natural speech – and Tools for the Processing of Expressive Speech – The JST CREST ESP Project. In Proceedings of Eurospeech 2001, Aalborg, Denmark, 2001.
[Car92] Carlson, R.; Granström, B.; Nord, L.: Experiments with emotive speech - Acted utterances and synthesized replicas. In Proceedings of the International Congress on Spoken Language Processing. 1992.
[Car93] Cardie, C.: Using decision trees to improve case-based learning. In: Proceedings of 10th International Conference on Machine Learning, 25–32, 1993.
[Car94] Caruana, R.; Freitag, D.: Greedy attribute selection. In Proceedings of 11th International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 28–36, 1994.
[Che98] Chen, L.S.; Tao, H.; Huang, T.S.; Miyasat, T.; Nakatsu, R.: Emotion Recognition From Audiovisual Information. In Proceedings IEEE Workshop on Multimedia Signal Processing, pp. 83-88. Los Angeles, CA, USA, 1998.
[Che01] Cheveigné Alain de; Kawahara, Hidaki : Comparative evaluation of F0 estimation algorithms. In Proceedings of Eurospeech 2001, Aalborg, Denmark, 2001.
[Cos83] Cosmides L: Invariances in the acoustic expression of emotion in speech, in Journal of Experimental Psychology: Human Perception and Performance, 9, 6, 864-881. 1983.
[Cow95] Cowie, R.; Douglas-Cowie, E.: Speakers and hearers are people: Reflections on speech deterioration as a consequence of acquired deafness in “Profound Deafness and Speech Communication”. London, 1995.
[Cow99a] Cowie, R.; Douglas-Cowie, E.; Romano, A.: Changing Emotional Tone in Dialogue and its Prosodic Correlates. In Proc. ESCA Workshop on Dialogue and prosody, Eindhoven, The Netherlands, 1999.
[Cow99b] Cowie, R.; Douglas-Cowie, E.; Apolloni, B.; Taylor, J.; Fellenz, W.: What a neural net needs to know about emotion words in Proc. 3rd World Multiconf. On Circuits, Systems, Comms. And Computers. Athens, Greece, July 1999.
[Cow00] Cowie, R.; Douglas-Cowie, E.; Savvidou, S.; McMahon, E.; Sawey, M.; Schröder, M.: FEELTRACE’: An Instrument for Recording Perceived Emotion in Real Time. In, ISCA Workshop on Speech and Emotion, Belfast 2000.
[Cow01] Cowie, R.; Douglas-Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W.; G. Taylor, J.: Emotion recognition in human-computer interaction in “IEEE signal processing magazine”, pp. 32-80. January 2001.
[Dav75] Davis, M.; College, H.: Recognition of facial expresions. New York: Amo Press, 1975.
[Dat64] Davitz, J.R: Auditory correlates of vocal expression of emotional feeling. In The communication of emotional meaning, ed J.R. Davitz, 101-112. New York: McGraw-Hill, 1964.
[Dar65] Darwin, C.: The Expresion of Emotions in Man and Animals, John Murray, Ed.1872. Reprinted by univ. Chicago Press, 1965.
[Das97] Dash, M.; Liu, H.: Feature Selection for Classification. Intelligent Data Analysis - An International Journal, Elsevier, Vol. 1, No. 3, 1997
[Del96] Dellaert, F.; Polzin, T.; Waibel, A.: Recognizing Emotion in Speech ICSLP’96 Conference Proceedings, Delaware. 1996.
[Dev82] Devijver, P.A.; Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, 1982.
[Doa92] Doak, J.: An evaluation of feature selection methods and their application to computer security. Technical report, Davis, CA: University of California, Department of Computer Science, 1992.
[Dom96] Domingos, P.: Context-sensitive feature selection for lazy learners. Artificial Intelligence Review, 1996.
[Dov97] Doval, B.; d'Alessandro, C.: Spectral correlates of glottal waveform models: an analytic study in Proc. ICASSP 97, Munich, pp 446-452.
[Duc97] Duch, W.; Adamczak, R.; Jankowski, N.: Initialization and optimization of multilayered perceptrons. Third Conference on Neural Networks and Their Applications, Kule, October 1997, pp. 105-110
[Duc01] Duch, W.; Jankowski, N.: Transfer functions: hidden possibilities for better neural networks. 9th European Symposium on Artificial Neural Networks (ESANN), Brugge 2001. De-facto publications, pp. 81-94.
[Ekm73] Ekman, P.: Darwin and Facial Esxpresions. New York: Academic, 1973.
[Fer01] Fernández-Redondo, M; Hernández-Espinosa, C.: Weight Initialization Methods for Multilayer Feedforward. ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 25-27 April 2001,
[Fri62] Friedhoff, A. J.; Alpert, M.; Kurtzberg, R. L.: An effect of emotion on voice. Nature, 193.Hansen, J. (1999): Speech Under Simulated and Actual Stress (SUSAS). LDC 99S78. 1962.
[Gam97] Gamberger, D; Lavrac, N.: Conditions for Occam’s Razor applicability and noise elimination. In Proccedings of the Ninth European Conference on Machine Learning, 1997.
[Gen89] Gennari, J.H.; Langley, P.; Fisher, D.: Models of incremental concept formation. Artificial Intelligence, (40):11–61, 1989.
[Gil01] McGilloway, S.; Cowie, R.; Doulas-Cowie, E.; Gielen, S.; Westerdijk, M.; Stroeve S.: Approaching Automatic Recognition of Emotion from Voice: A Rough Benchmark.
[Gra96] Graf, H.; Cossato, D.; Gibbon, D.; Kocheisen, Petajan, E.; Multi-modal system for locating heads and faces, in Proc. Int. Conf. On automatic Face and Gesture recognition. Vermont, Oct, 1996, pp.88-93.
[Gre95] Greasley, P.; Setter, J.; Watterman, M. Sherrard, C.; Roach, P.; Arnfield, S.; Horton, D.: Representation of prosodic and emotional features in a spoken language database. Proceedings of the 13th International Congress of Phonetic Sciences. Stockholm. 244-245. 1995.
[Gui64] Ghiselli, E. E.: Theory of Psychological Measurement. McGrawHill, New York, 1964.
[Gus01] Gustafson-Capková, S.: Emotions in Speech: Tagset and Acoustic Correlates. Speech technology, term paper. Autumn 2001.
[Hag95] Hagen, A.: Analyse verschiedenerGrundfrequenzenverfahren an unterschiedlichen Sprachmaterial, Studentwork, Lehrstuhl fuer Mustererkennung (informatics 5), Erlangen-Nuernberg University.
[Hal99] Hall, M. A.; Smith, L. A.: Feature Selection for Machine Learning: Comparing a Correlation-based Filter Approach to the Wrapper. In Proceedings of the Florida Artificial Intelligence Symposium, FLAIRS-99.
[Har94] Harbeck, S.: Entwicklung eines robusten Systemszum periodensynchronen Analyse der Grundfrequenz von Sprachsignalen, Diploma Thesis, Lehrstuhl fuer Mustererkennung (Informatics 5), Erlangen-Nuernberg University.
[Hec68] Hecker M.; Stevens, K.; von Bismarck, G.; Williams, C. E.: Manifestations of task-induced stress in the acoustic speech signal. Journal of the Acoustical Society of America. 1968.
[Hen01] Henrich, N.; d'Alessandro, C.; Doval, B.: Spectral correlates of voice open quotient and glottal flow asymmetry: theory, limits and experimental data. In EUROSPEECH 2001, Denmark, Sept.2001.
[Hes83 ] Hess, W.: Pitch Determination of Speech Signals, Bd.3 from Springer Series of Information Sciences, Springer-Verlag, Berlin, 1983.
[Hog77] Hogarth, R. M.: Methods for aggregating opinions. In H. Jungermann and G. de Zeeuw, editors, Decision Making and Change in Human Affairs. D. Reidel Publishing, Dordrecht-Holland, 1977.
[Hub98] Huber, R: Prosodische Linguistische Klassifikation von Emotionen. PhD Thesis.
[Hub98] Huber, R.; Nöth, E.; Batliner, A.; Buckow, J.; Warnke, V.; Niemann, H.: You BEEP Machine – Emotion in Automatic Speech Understanding Systems”. TSD’98, Brno, Masaryc University.
[Ichi84] Ichino, M.; Sklansky, J.: Feature selection for linear classifier. In: Proceedings of the Seventh International Conference on Pattern Recognition, volume 1, 124–127, July–Aug 1984.
[Ichi84b] Ichino, M.; Sklansky, J.: Optimum feature selection by zero-one programming. IEEE Trans. on Systems, Man and Cybernetics, SMC-14(5):737–746, September/October 1984.
[Jan01] Jankowski, N.; Duch, W.: Optimal transfer function neural networks. In 9th European Symposium on Artificial Neural Networks (ESANN), Brugge 2001. De-facto publications, pp. 101-106.
[Iid98] Iida, A.; Campbell, N.; Yasamura, M.: Design and Evaluation of Synthesised Speech with Emotion. Journal of Information Processing Society of Japan, 40 (2). 1998.
[Iwa95] Iwano, Y.: Extraction of Speaker’s Feeling using Facial Image and Speech in Proceedings IEEE International Workshop on Robot an Human. Tokio, Japan, 1995.
[Joh99] Johnstone, T.; Scherer, K.: The effects of emotions on voice quality. University of Geneva. Proceedings of the XIVth Internationl Congress of Phonetic Sciences, 1999, San Francisco.
[Kap01] Kappas, A.: What is emotion? Department of Psychology, University of Hull. United Kingdom, 2001.
[Kie96] Kiessling, A.; Kompe, R.; Batliner, A.; Niemman, H,; Nöth, E: Classification of Boundaries an accents in Spontaneous Speech in proceedings of the CRIM/FORWISS Workshop, Montreal, Oct 1996.
[Kie97] Kiessling, A.: Extraktion und Klassifikation prosodischer Merkmale in der automatischen Sprachverarbeitung, Berichte aus der Informatik, Shaker, Aachen, 1997.
[Kie00] Kienast, M.: Sendlmeier, W.F.: Acoustical analyisis of spectral and temporal changes in emotional speech. Queen’s University. In Proceedings of ISCA Workshop on Speech and Emotion. Belfast, 2000.
[Kir92] Kira, K.; Rendell, L.A.: The feature selection problem: Traditional methods and a new algorithm. In: Proceedings of Ninth National Conference on Artificial Intelligence, 129–134, 1992.
[Kla97] Klasmeyer, G.: The Perceptual Importance of Selected Voice Quality Parameters in Proceedings of ICASSP'97, Munich, Germany, 1997.
[Kla00] Klasmeyer, G.; Sendlmeier, W.F.: Voice and emotional states. In Kent, R.D. & Ball, M.J. (eds.): Voice quality measurement. San Diego, 2000.
[Kle81] Kleinginna, P.R.; Kleinginna, A.M.: A categorized list of emotion definitions with suggestions for a consensual definition. Motivation and Emotion, 5, 345-379. 1981.
[Koh95] Kohavi, R.: Wrappers for Performance Enhancement and Oblivious Decision Graphs. PhD thesis, Stanford University, 1995.
[Koh96] Kohavi, R.; John, G.: Wrappers for feature subset selection. Artificial Intelligence, special issue on relevance, 97(1–2): 273–324, 1996.
[Kol96] Koller, D.; Sahami, M.: Toward optimal feature selection. In: Proceedings of International Conference on Machine Learning, 1996.
[Kom89] Kompe, R.: Ein Mehrkanal verfahren zur Berechnung der Grungfrequenzkontour unter Einsatz der Dinamischen Programmierung, Diploma Thesis, The Chair for Pattern Recognition (Informatics 5), Erlangen-Nuernberg University, 1989.
[Kon94] Kononenko, Igor: Estimating Attributes: Analysis and Extensions of RELIEF. In Proceedings of European Conference on Machine Learning, 171–182, 1994.
[Lan94a] Langley, P.; Sage, S.: Oblivious decision trees and abstract cases. In Working Notes of the AAAI-94 Workshop on Case-Based Reasoning, Seattle, W.A, 1994. AAAI Press.
[Lan94b] Langley, P.; Sage, S.: Scaling to domains with irrelevant features. In R. Greiner, editor, Computational Learning Theory and Natural Learning Systems, volume 4. MIT Press, 1994.
[Lan94c] Langley, P.; Sage, S.: Induction of selective Bayesian classifiers. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, W.A, 1994. Morgan Kaufmann.
[Lat92] Lathi, B. P.: Linear Systems and Signals. Carmichael, Calif: Berkeley-Cambridge Press, 1992.
[Lee01] Lee, C.M.; Narayanan, S.; Pieraccini, R.: Recognition of Negative Emotion in the Human Speech Signals, Workshop on Auto. Speech Recognition and Understanding, Dec 2001.
[Liu96] Liu, H.; Setiono, R.: A probabilistic approach to feature selection—a filter solution. In: Proceedings of International Conference on Machine Learning, 319–327, 1996.
[Liu96b] Liu, H.; Setiono, R.: Feature selection and classification—a probabilistic wrapper approach. In: Proceedings of Ninth International Conference on Industrial and Engineering Applications of AI and ES, 284–292, 1996.
[Mar97] Marasek, K.: Electroglottographic Description of Voice Quality. Phonetic AIMS, 1997.
[Meh74] Mehrabian, A.; Russel, J.: An approach to environmental psychology. Cambridge: MIT Press. 1974.
[Mil90] Miller, A. J.: Subset Selection in Regression. Chapman and Hall, New York, 1990.
[Mja01] Mjahed, M.: Classification of Multi-jet Topologies in e+ e - collisions using Multivariate Analysis Methods and Morphological Variables. 2001.
[Mod93] Modrzejewski, M.: Feature selection using rough sets theory. In: Proceedings of the European Conference on Machine Learning (P. B. Brazdil, ed.), 213–226, 1993.
[Mon02] Montero, J.M.; Gutiérrez-Arriola, J.; de Córdoba, R.; Enríquez, E.; Pardo, J.M.: The Role of Pitch and Tempo in Spanish Emotional Speech. E. Keller, G. Bailly, A. Monaghan, J. Terken, M. Huckvale (eds) pp 246-251, John Wiley and Sons, ISBN 0471-49985-4, 2002
[Moo94] Moore, A.W.; Lee, M.S.: Efficient algorithms for minimizing cross validation error. In: Proceedings of Eleventh International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 190–198, 1994.
[Moz00] Mozziconacci, S. J. L.: The expression of emotion considered in the framework of an intonational model. Keynote paper for ITRW ‘Speech and Emotion: A conceptual framework for research’, Newcastle, Northern Ireland, 2000.
[Mrp94] Murphy, P. M.; Aha, D. W.: UCI Repository of Machine Learning Databases. Irvine, CA: University of California, Department of Information and Computer Science. 1994.
[Muc71] Mucciardi, A.N.; Gose, E.E.: A comparison of seven techniques for choosing subsets of pattern recognition. IEEE Transactions on Computers, C-20:1023–1031, September 1971.
[Mur93] Murray, I.; Arnott, J.L.: Towards the Simulation of emotion in Synthetic Speech: A review of the Literature on Human Vocal Emotion,.in Journal of the Acoustic Society of America, 1993, pp. 1097-1108.
[Nar77] Narendra, P.M.; Fukunaga, K.: A branch and bound algorithm for feature selection. IEEE Transactions on Computers, C-26(9):917–922, September 1977.
[Nie83] Niemann, H.: Klassification von Mustern, Springer-Verlag, Berlin, 1983.
[Not91] Noeth, E,: Prosodische Information in der automatischen Spracherkennung – Berechung und Anwendung, Niemeyer, Tubingen, 1991.
[Oli92] Oliveira, A. L.; Vincentelli, A.S.: Constructive induction using a non-greedy strategy for feature selection. In: Proceedings of Ninth International Conference on Machine Learning, 355–360, Morgan Kaufmann, Aberdeen, Scotland, 1992.