SUPPORTING INFORMATION

Dibenzofuran and Methyldibenzofuran derivatives: assessment of thermochemical data

Vera L. S. Freitas,a José R. B. Gomes,b Maria D. M. C. Ribeiro da Silvaa*

aCentro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal

bCICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal

* Corresponding author:

e-mail address: ; fax: +351 220 402 522; p

1

This supporting information includes the following Tables:

Table S1Standard (pº = 0.1 MPa) molar heat capacities in the gaseous phase for dibenzofuran determined by B3LYP/6-31G(d) calculations.

Table S2Typical combustion results and standard (pº = 0.1 MPa) massic energy of combustion of dibenzofuran, at T = 298.15 K.

Table S3G3(MP2)//B3LYP absolute enthalpies and the experimental gas-phase standard (pº = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for dibenzofuran, for the methyl derivatives of benzofuran and dibenzofuran and for all the auxiliary species considered in the working reactions 5-19.

1

Table S1 Standard (pº = 0.1 MPa) molar heat capacities in the gaseous phase for dibenzofuran determined by B3LYP/6-31G(d) calculations.

T / K /
250.00 / 79.98
298.15 / 107.40
300.00 / 137.68
350.00 / 167.32
400.00 / 168.44
450.00 / 197.95
500.00 / 225.21
550.00 / 249.83
600.00 / 271.77
650.00 / 291.24

1

TableS2Typical combustion results and standard (pº = 0.1 MPa) massic energy of combustion of dibenzofuran, at T = 298.15 K.a

Experiment / 1 / 2 / 3 / 4 / 5 / 6
m (CO2, total) / g / 1.42227 / 1.47812 / 1.32183 / 1.44248 / 1.61915 / 1.45365
m (cpd) / g / 0.41996 / 0.43813 / 0.37791 / 0.39784 / 0.45489 / 0.39502
m (fuse) / g / 0.00325 / 0.00278 / 0.00264 / 0.00257 / 0.00294 / 0.00255
m (Melinex®) / g / 0.04294 / 0.04307 / 0.05738 / 0.08273 / 0.08124 / 0.09133
m (carbon) / g / 0 / 0.00020 / 0.00013 / 0.00010 / 0 / 0
Tad / K / 1.00219 / 1.04206 / 0.93032 / 1.01117 / 1.13724 / 1.01823
f / (J·K-1) / 14.02 / 14.06 / 13.96 / 14.01 / 14.17 / 14.01
m (H2O) / g /  0.3 / 0.2 /  0.7 / 0.1 / 0.3 /  0.1
U (IBP) / J / 15597.93 / 16220.68 / 14477.69 / 15739.38 / 17702.91 / 15848.41
U (carbon ) / J / 0 / 6.60 / 4.29 / 3.30 / 0 / 0
U (Melinex®) / J / 983.47 / 986.44 / 1314.03 / 1894.74 / 1860.48 / 2091.66
U (fuse) / J / 52.78 / 45.15 / 42.87 / 41.74 / 47.75 / 41.41
U (HNO3) / J / 0.62 / 0.53 / 0.42 / 0.40 / 1.88 / 1.85
U (ign.) / J / 0.62 / 0.65 / 0.63 / 0.62 / 0.64 / 0.63
U / J / 10.06 / 10.49 / 9.34 / 10.34 / 11.72 / 10.45
cuº (cpd) / (J·g-1) / 34648.54 / 34657.91 / 34704.88 / 34675.90 / 34692.08 / 34689.48
% CO2 / 100.047 / 100.071 / 100.074 / 100.049 / 99.998 / 100.075
= (100.05 ± 0.01)
=  (34687.1 ± 8.8)b J·g-1

am(CO2, total)is the total mass of CO2 formed in the experiment; m(cpd) is the mass of the compound burnt in each experiment; m (fuse) is the mass of the fuse (cotton) used in each experiment; m(Melinex®) is the mass of Melinex® used in each experiment;m(carbon) is the mass of carbon formed in each experiment;Tad is the corrected temperature rise; f is the energy equivalent of the contents in the final state; m(H2O) is the deviation of mass of water added to the calorimeter from 2900.0 g; U(IBP) is the energy change for the isothermal combustion reaction under actual bomb conditions that includes the U(ign); U(carbon) is the energy of combustion of carbon;U(Melinex®) is the energy of combustion of Melinex®; U(fuse) is the energy of combustion of the fuse (cotton); U(HNO3) is the energy correction for the nitric acid formation; U(ign) is the electric energy for the ignition; U is the standard state correction; cuº(cpd) is the standard massic energy of combustion and % CO2 is the percentage of carbon dioxide recovered.

b Mean value of the standard massic energy of combustion and the standard deviation of the mean.

1

Table S3G3(MP2)//B3LYP absolute enthalpies and the experimental gas-phase standard (pº = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for dibenzofuran, for the methyl derivatives of benzofuran and dibenzofuran and for all the auxiliary species considered in the working reactions 5-19.

Compound / H298 / u.a. /
anthracene /  538.606424 / 230.9 ± 2.2 [[i]]
benzene /  231.835164 / 82.6 ± 0.7 [[ii]]
benzofuran /  383.069956 / 13.6 ± 0.7 [[iii]]
benzothiophene /  705.698270 / 166.3  0.9 [2]
1,4-cyclohexadiene /  232.990884 / 104.75  0.59 [[iv]]
1,3-cyclopentadiene /  193.753718 / 134.3 ± 1.5 [2]
dibenzofuran /  536.468297 / 55.0  3.9a
dibenzothiophene /  859.095278 / 211.3  4.5 [[v]]
9,10-dihydroanthracene /  539.796179 / 159.7 ± 4.3 [2]
furan /  229.674800 /  34.8 ± 0.7 [2]
4-methylbenzofuran /  422.310413 /  21.7  0.4 a
5-methylbenzofuran /  422.308610 /  16.7  0.5 a
6-methylbenzofuran /  422.308860 /  17.4  0.5 a
7-methylbenzofuran /  422.310743 /  22.6  0.4 a
1-methyldibenzofuran /  575.709319 / 18.0  0.4 a
2-methyldibenzofuran /  575.706959 / 24.5  0.3 a
3-methyldibenzofuran /  575.707383 / 23.4  0.3 a
4-methyldibenzofuran /  575.709297 / 18.1  0.4 a
1-methylnaphthalene /  424.463076 / 116.9  2.7 [[vi]]
2-methylnaphthalene /  424.463570 / 116.1  2.6 [6]
naphthalene /  385.223727 / 150.3 ± 1.4 [2]
thiophene /  552.305082 / 115.0  1.0 [2]
toluene /  271.074388 / 50.5  0.5 [2]

a This work.

1

References

1

[i].Coleman DJ, Pilcher G (1966) Heats of combustion of biphenyl, bibenzyl, naphthalene, anthracene and phenanthrene. Trans Faraday Soc 62:821-827

[ii].Pedley JB (1994), Thermochemical Data and Structures of Organic Compounds Thermodynamics. Research Centre, College Station, Texas

[iii].Steele WV, Chirico RD (1990) Cooperative Agreement No. FC22-83FE60149 (NIPEP-457), IIT Research Institute, NIPEP, Bartlesville, OK 74005

[iv].Steele WV, Chirico RD, Nguyen A, Hossenlopp I, Smith NK (1989) Determination of some pure compound ideal-gas enthalpies of formation. AIChE Symp Ser 85:140-162

[v].Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2009) Revisiting dibenzothiophene thermochemical data: Experimental and computational studies. J Chem Thermodyn 41:1199-1205

[vi].Speros DM, Rossini FD (1960) Heats of combustion and formation of naphthalene, the two methylnaphthalenes, cis and trans- decahydronaphthalene and related compounds. J Phys Chem 64: 1723-1727