University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

EECS 150R. H. Katz

Fall 2000

Problem Set # 3 Solution

3a. Assume each gate has the same delay.

IN

U1

U3

U4

U2

3b.

IN

U1

U3

U2

This circuit does not have an oscillating output. Since signal U2 is high all the time, signal U3 will remain low and is constant, independent of signal U1.

4.

1a) F(A,B,C,D) = (ABC+A’B’) (C+D)

A / B / C / D / F
0 / 0 / 0 / 0 / 0
0 / 1 / 1
1 / 0 / 1
1 / 1 / 1
0 / 1 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 0
1 / 0 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 0
1 / 1 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 1
1 / 1 / 1

D

1

0

0

0 F

0

0

1

A B C

1b) G(B,C) = B’C’; F(A,B,C,D) = [(A+B) (A’+C) + G]G’ (A’C’ + G)

A / B / C / D / F
0 / 0 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 0
0 / 1 / 0 / 0 / 1
0 / 1 / 1
1 / 0 / 0
1 / 1 / 0
1 / 0 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 0
1 / 1 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 0

0

0

1

0

0 F

0

0

0

A B C

1c) F(A,B,C,D) = [A’+B’+C) (B+C’) (C+D’)’ (A+B’+C’)’] + ACD’ +BC’D’

A / B / C / D / F
0 / 0 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 0
0 / 1 / 0 / 0 / 1
0 / 1 / 0
1 / 0 / 0
1 / 1 / 0
1 / 0 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 1
1 / 1 / 0
1 / 1 / 0 / 0 / 1
0 / 1 / 0
1 / 0 / 1
1 / 1 / 0

0

0

D’

0

0 F

D’

D’

D’

A B C

2c) F(A,B,C,D) = B’CD + A’B’D + A’C

A / B / C / D / F
0 / 0 / 0 / 0 / 0
0 / 1 / 1
1 / 0 / 1
1 / 1 / 1
0 / 1 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 1
1 / 1 / 1
1 / 0 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 1
1 / 1 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 0

D

1

0

1

0 F

D

0

0

A B C

2a) F(A,B,C) = AB + BC + AC

A / B / C / F
0 / 0 / 0 / 0
0 / 1 / 0
1 / 0 / 0
1 / 1 / 1
1 / 0 / 0 / 0
0 / 1 / 1
1 / 0 / 1
1 / 1 / 1

0

C F

C

1

A B

2b) F(A,B,C) = A’B’C + A’BC’ + AB’C’ + ABC

A / B / C / F
0 / 0 / 0 / 0
0 / 1 / 1
1 / 0 / 1
1 / 1 / 0
1 / 0 / 0 / 1
0 / 1 / 0
1 / 0 / 0
1 / 1 / 1

C

C’ F

C’

C

A B

5. First, you have to write out the truth tables for each function and use K-map to reduce

their sum of product forms.

1a. F(A,B,C,D) = (ABC+A’B’) (C+D)

= A’B’C’D + A’B’CD’ + A’B’CD + ABCD’ + ABCD

= ABC + A’B’C + A’B’D

1b. G(B,C) = B’C’; F(A,B,C,D) = [(A+B) (A’+C) + G]G’ (A’C’ + G)

= A’BC’D’ + A’BC’D

= A’BC’

1c. F(A,B,C,D) = [A’+B’+C) (B+C’) (C+D’)’ (A+B’+C’)’] + ACD’ +BC’D’

= A’BC’D’ + AB’CD’ + ABC’D’ + ABCD’

= BC’D’ + ACD’

2a. F(A,B,C) = AB + BC + AC

2b. F(A,B,C) = A’B’C + A’BC’ + AB’C’ + ABC

2c. F(A,B,C,D) = B’CD + A’B’D + A’C

Distinct Products Terms in the above equations:

ABC A’B’C A’BC’ AB’C’ A’B’D ACD’ BC’D’ B’CD A’C AC AB BC

A B C D

ABC

A’B’C

A’BC’

AB’C’

A’B’D

ACD’

BC’D’

B’CD

A’C

AC

AB

BC

A A’ B B’ C C’ D D’

F1a F1b F1c F2a F2b F2c