Kirkwood Community College Course Syllabus
Technical Physics II
PHY-232
Spring 2017
Instructor / Jim Trepka
Instructor Information / Office: 140 Jones Hall
Telephone: 398-7146
Email:
Home Page:
Section Information / 0269828
M T W TH 9:05-10:00
Credit Hours / 3 credit hours (2 lecture credits, 1 lab credits, 0 clinic credits, 0 internship credits).
Contact Hours / 32 lecture hours, 32 lab hours, 0 clinic hours, 0 internship hours
Prerequisites / Technical Physics I (PHY230)
Course Description / Subjects studied include matter, fluids, temperature and heat transfer, properties of gases, wave motion and sound, light, reflection and refraction, color, and modern physics. Concepts are emphasized through laboratory and lecture.
Required Course Materials / Purchase access code to saplinglearning.com available at the Kirkwood Bookstore. Textbook is a free open source book
Books and course materials for this course are available at the Kirkwood Bookstore.
General Education Outcomes / The Kirkwood faculty has identified the following general education outcomes as a major theme of this course.
  • Students will think logically and critically.
  • Students will understand and apply fundamental scientific principles.
  • Students will understand and apply fundamental mathematic principles.
  • Students will understand human society and cross-cultural variation and perspectives.
  • Students will have a knowledge of and an appreciation for the human condition as expressed in works of human imagination and thought.
  • Students will possess skills for further learning and the general workplace.

Course Student Learning Outcomes and Competencies / Upon completion of this course students will be able to:
Course Outcomes:
  1. Analyze applied physics problems using appropriate equations and techniques
  2. Build and assemble applied physics labs
  3. Perform measurements of applied physics labs
Course Competencies:
  1. Describe mathematically and conceptually Hooke’s Law. Measure a spring constant experimentally. Solve problems with Hooke’s Law.
  2. Define and differentiate absolute pressure, gauge pressure, and atmosphere pressure. Calculate pressures (both absolute and gauge). Construct a manometer and explain the term.
  3. Convert between Celsius, Fahrenheit, and Kelvin. Identify the relationship between the Celsius and Kelvin scale. Perform experiments where temperature is measured in Celsius.
  4. Solve problems that involve the calculations of calorie, the kilocalorie, the joule, and the British thermal unit (Btu). Perform an experiment where specific heat capacity of various materials is measured. Calculate the specific heat capacity in problems involving different materials and the concept of the conservation of heat.
  5. Conceptually describe the Ideal Gas Law. State the 1st and 2nd Laws of Thermodynamics. Explain why a heat engine cannot be 100% efficient. Solve problems involving the Ideal Gas Law, the 1st and 2nd Laws of Thermodynamics, and the efficiency of a heat engine and a refrigerator.
  6. Describe the relationship between displacement, velocity, and acceleration in simple harmonic motion. Perform experiments on a pendulum and calculate its period based on its length. Solve problems involving frequency, amplitude, and period.
  7. Discriminate between transverse and longitudinal. Solve problems that involve wavelength, interference, and resonance in harmonic waves.
  8. Perform calculations involving the speed of sound. Explain the Doppler effect and solve problems involving the Doppler effect. Demonstrate sound resonance experimentally.
  9. List different types of electromagnetic radiation and compare their characteristics. Solve problems that involve frequency and energy in electromagnetic waves. State the speed of different types of electromagnetic radiation.
  10. Describe light as it is represented by rays. Describe how light is processed by mirrors, lenses, and other common optical systems. Identify the special characteristics of laser light. Solve problems that involve the focal length of a lens or mirror and the index of refraction of an optical boundary. State the principles and solve problems of fiber optic systems.
  11. Actively participate in class laboratories. Assume responsibility for laboratory equipment. Assist other students and contribute to group activities. Conform to all stated safety standards. Use appropriate language in and out of the classroom.
Learning Competencies
(The wording for these competencies is from PHYSICS, Sixth Edition by Paul E. Tippens)
Properties of Materials I (Elasticity) Competencies
  1. Demonstrate by example and discussion your understanding of elasticity, elastic limit, stress, strain, and ultimate strength.
  2. Write and apply formulas for calculating Young’s modulus, shear modulus, and bulk modulus.
Properties of Materials II (Fluids) Competencies
  1. Define and apply the concepts of fluid pressure and buoyant force to the solution of physical problems.
  2. Define absolute pressure, gauge pressure, and atmosphere pressure, and demonstrate by examples your understanding of the relationships between these terms.
  3. Define the rate of flow of a fluid and solve problems that relate the rate of flow to the velocity and cross-sectional area.
  4. Write Bernoulli’s equation in its general form and describe the equation as it would apply to (a) a fluid at rest, (b) fluid flow at constant pressure, and (c) flow through a horizontal pipe.4
  5. Apply Bernoulli’s equation to the solution of problems involving absolute pressure P, density p, fluid elevation h, and fluid velocity v.
Temperature and Matter Competencies
  1. Demonstrate your understanding of the Celsius, Fahrenheit, Kelvin, and Rankine temperature scales by converting from specific temperatures on one scale to corresponding temperatures on another scale.
  2. Distinguish between specific temperatures and temperature intervals and convert an interval on one scale to the equivalent interval on another scale.
  3. Write formulas for linear expansion, area expansion, and volume expansion and be able to apply them to the solution of problems similar to those given in this chapter.
  4. Write and apply the relationship between the volume and the pressure of a gas at constant temperature (Boyle’s law).
  5. Write and apply the relationship between the volume and the temperature of a gas under conditions of constant pressure (Charles’ law).
  6. Write and apply the relationship between the temperature and pressure of a gas under conditions of constant volume (Gay-Lussac’s law).
  7. Apply the general gas law to the solution of problems involving changes in mass, volume, pressure, and temperature of gasses.
  8. Define vapor pressure, dew point, and relative humidity, and apply these concepts to the solution of problems.
Heat Energy and Its Effects Competencies
  1. Define quantity of heat in terms of the calorie, the kilocalorie, the joule, and the British thermal unit (Btu).
  2. Write a formula for the specific heat capacity of a material and apply it to the solution of problems involving the loss and gain of heat.
  3. Write formulas for calculating the latent heats of fusion and vaporization and apply them to the solution of problems in which heat produces a change in phase of a substance.
  4. Define the heat of combustion and apply it to problems involving the production of heat.
Introduction to Thermodynamics Competencies
  1. Demonstrate by definition and examples your understanding of the first and second laws of thermodynamics.
  2. Define and give illustrated examples of adiabatic, isochoric, and isothermal processes.
  3. Write and apply a relationship for determining the ideal efficiency of a heat engine.
  4. Define the coefficient of performance for a refrigerator and solve refrigeration problems similar to those discussed in the text.
  5. Demonstrate by definition and examples your understanding of the first and second laws of thermodynamics.
  6. Define and give illustrated examples of adiabatic, isochoric, and isothermal processes.
  7. Write and apply a relationship for determining the ideal efficiency of a heat engine.
  8. Define the coefficient of performance for a refrigerator and solve refrigeration problems similar to those discussed in the text.
Transfer of Heat Competencies
  1. Demonstrate by definition and example your understanding of thermal conductivity, convection, and radiation.
  2. Solve thermal conductivity problems involving parameters such as quantity of heat Q, surface area A, surface temperature t, time τ, and material thickness L.
  3. Solve problems involving the transfer of heat by convection and discuss the meaning of the convection coefficient.
  4. Define the rate of radiation and emissivity and use these concepts to solve problems involving thermal radiation.
Vibratory Motion Competencies
  1. Describe and apply the relationship between force and displacement in simple harmonic motion.
  2. Write and apply formulas for the determination of displacement x, velocity v, or acceleration a in terms of time, frequency, and amplitude.
  3. Write and apply a relationship between the frequency of motion and the mass of a vibrating object when the spring constant is known.
  4. Compute the frequency or period in simple harmonic motion when the position and acceleration are given.
  5. Describe the motion of a simple pendulum and calculate the length required to produce a given frequency.
Waves Competencies
  1. Demonstrate by definition and example you understanding of transverse and longitudinal wave motion.
  2. Define, relate, and apply the meaning of the terms frequency, wavelength, and speed for wave motion.
  3. Solve problems involving the mass, length, tension, and wave velocity for transverse waves in a string.
  4. Write and apply an expression for determining the characteristic frequencies for a vibrating string with fixed end points.
Sound Competencies
  1. Define sound and solve problems involving its velocity in metal, in a liquid, and in a gas.
  2. Use boundary conditions to derive and apply relationships for calculating the characteristic frequencies for an open pipe and for a closed pipe.
  3. Compute the intensity level in decibels for a sound whose intensity is given in watts per square meter.
  4. Use your understanding of the Doppler effect to predict the apparent change in sound frequency that occurs as a result of relative motion between a source and an observer.
Light Wave Competencies
  1. Discuss the historical investigation into the nature of light and explain how light sometimes behaves as a wave and sometimes as particles.
  2. Describe the broad classification in the electromagnetic spectrum on the basis of frequency, wavelength, or energy.
  3. Write and apply formulas for the relationship between velocity, wavelength, and frequency, and between energy and frequency for electromagnetic radiation.
  4. Describe experiments that will result in a reasonable estimation of the speed of light.
  5. Illustrate with drawings your understanding of the formation of shadows, labeling the umbra and penumbra.
  6. Demonstrate your understanding of the concepts of luminous flux, luminous intensity, and illumination, and solve problems similar to those in the text.
Reflection Competencies
  1. Define and illustrate with drawings your understanding of the following terms: virtual images, real images, converging mirror, diverging mirror, magnification, focal length, and spherical aberration.
  2. Use ray-tracing techniques to construct images formed by spherical mirrors.
  3. Predict mathematically the nature, size, and location of images formed by spherical mirrors.
  4. Determine the magnification and/or the focal length of spherical mirrors by mathematical and experimental methods.
Refraction Competencies
  1. Define the index of refraction and state three laws that describe the behavior of refracted light.
  2. Apply Snell’s law to the solution of problems involving the transmission of light in two or more media.
  3. Determine the change in velocity or wavelength of light as it moves from one medium into another.
  4. Explain the concepts of total internal reflection and the critical angle and use these ideas to solve problems similar to those in the text.
Lenses and Optical Instruments Competencies
  1. Determine mathematically or experimentally the focal length of a lens and state whether it is converging or diverging.
  2. Apply the lensmaker’s equation to solve for unknown parameters related to the construction of lenses.
  3. Use ray-tracing techniques to construct images formed by diverging and converging lenses for various object locations.
  4. Predict mathematically or determine experimentally the nature, size, and location of images formed by converging and diverging lenses.
Interference, Diffraction, and Polarization Competencies
  1. Demonstrate by definition and drawings your understanding of the terms constructive interference, destructive interference, diffraction, polarization, and resolving power.
  2. Describe Young’s experiment and be able to use the results to predict the location of bright and dark fringes.
  3. Discuss the use of a diffraction grating, derive the grating equation, and apply it to the solution of optical problems.
Lab Competencies by Experiment
(The wording for these competencies comes from Technical Concepts I and Technical Concepts II by ECI Staff published by Energy Concepts, Inc.)
Experiment 1F1 Measuring Specific Gravity Competencies
  1. Measure the specific gravity of a liquid using a hydrometer and a pocket hydrometer.
  2. Determine the density of a liquid given the specific gravity of that liquid.
Experiment 1F2 Measuring Pressure Competencies
  1. Measure pressure above atmospheric pressure with a manometer and a mechanical pressure gauge.
  2. Measure pressure below atmospheric pressure with a manometer and a mechanical pressure gauge.
  3. Calculate absolute pressure, given atmospheric pressure and measured pressure
Experiment 5MF1 Measuring The Potential Energy Of A Spring Competencies
  1. Find the spring constant for a spring.
  2. Predict the stretch caused by a known force applied to a spring.
Figure the Experiment 5MF3 Using Energy In Compressed Air To Operate Air Motors Competencies
  1. Use energy stored in a compressed air system to operate an air motor.
  2. Measure the rotational speed of the air motor.
  3. Find the pressure drop across the air motor as it does work.
Experiment 5T2 Thermal Energy And The Specific Heat Of A Metal Competencies
  1. Set up a device to find the specific heat of a metal.
  2. Find the specific heat of a given metal, and state its units.
Experiment 6F2 Power From Air Motors Competencies
  1. Set up and use and air motor mechanism to lift a load.
  2. Measure pressure drop across an air motor.
  3. Measure flow rate through an air motor.
  4. Find the efficiency of the air motor being used.
Experiment 9*1 Natural Frequency Of A Vibrating Body Competencies
  1. Assemble a system to measure the natural frequency of a simple pendulum.
  2. Measure the natural frequency of a simple pendulum.
  3. Assemble a system to measure the natural frequency of a vibrating system.
  4. Calculate the natural frequency of a vibrating system.
Experiment 9*3 Resonance Of Sound Waves In Hollow Tubes Competencies
  1. Find the wavelength of the first four resonant frequencies of an open tube with known length.
  2. Find the resonant frequencies for sound of a given wavelength.
  3. Measure the resonant frequencies of sound for several open tubes using a function generator, a speaker, a microphone, and an oscilloscope.
Experiment 11F1 Calibrating A Pressure Gauge Competencies
  1. Use a U-tube manometer to measure air pressure.
  2. Compare pressure measurement made with a differential pressure gauge to that of the U-tube manometer.
  3. Calculate the percent accuracy of the differential gauge readings compare to the manometer.
Experiment 13*1/2 Reflection Of Light Competencies1
  1. Measure the angle of incidence and the angle of reflection for a plane mirror. By comparing the two angles, demonstrate the law of reflection.
  2. Locate the focal point and directly measure the focal length of a concave mirror.
  3. Locate the focal point and measure the focal length of a convex mirror, using ray-tracing methods.
Experiment 13*3 Refraction Of Light Competencies1
  1. Use a laser and a slab of transparent material to show how light is refracted (bent) when it passes from: Air into the transparent material and the transparent material into air
  2. Explain how the angle of refraction relates to the angle of incidence for a light beam passing through two different materials (Snell’s Law).
Experiment 13*4/5 Lens Experiments Competencies1
  1. Locate the focal point of a positive lens and directly measure its focal length.
  2. Locate the focal point of a negative lens and directly measure its focal length.
  3. Design and build a lens system that expands the size of a light beam.
  4. Calculate and measure the magnification of a beam-expanding lens system.
Experiment 13*6 Prism Experiments Competencies1
  1. Trace a light beam through an equilateral prism.
  2. Trace a light beam through a right angle prism.
  3. Measure the total bending angle in a prism.
  4. Find the critical angle in a prism.
Experiment 13*8 Fiber-Optic Data Links Competencies1
  1. Use a fiber-optic cable to transmit laser light.
  2. Assemble a fiber-optic data link.
  3. Transmit a signal using the fiber-optic data link.
  4. Use a dual trace oscilloscope to compare the input and output signals of a data link.
1. We do not do the UTC experiment, but the students do a similar experiment from PASCO
Late Work/Make-up Test Policy / No late work will be accepted!
Class Attendance Policy and College Sponsored Activities / As stated in the Student handbook: In compliance with Public Law 105-244, Kirkwood Community College makes a wide variety of general institutional information available to students. For additional information, go to:
Productive Classroom Learning Environment / We believe that the best learning takes place in an environment where faculty and students exhibit trust and mutual respect.
In a productive learning environment, faculty and students work cooperatively, recognize and respect differences, model the values of character and citizenship, and become lifelong learners.
Plagiarism Policy / See Student Policies: Academic and Enrollment Policies

Campus Closings / See Student Policies: General Policies and Student Rights

Academic Accommodations / Students with specific academic and/or classroom needs may request individualized accommodations. Students wishing to request accommodations should complete an 'Accommodation Request Form' which is available at the Learning Services office, 2063 Cedar Hall, or online at Students will be asked to provide documentation supporting their request. An accommodation plan must be completed each semester and given to instructors before academic accommodations will be provided.
Midterm grades / A midterm grade will be calculated and posted on EagleNet. The midterm grade is a grade-in-progress, and will not affect your official GPA, nor will it impact financial aid. The midterm grade has three purposes: first, to communicate your academic performance; second, to provide opportunities for you to discuss your progress with your instructor; and third, to allow Kirkwood to design college-wide intervention programs that will improve student success.