Corn Genetics and Chi Square Analysis Name ______Partner ______
Background: Each kernel on a cob of corn is a separate offspring (zygote) resulting from a cross between a male (sperm-pollen) and female (egg) parent. The colored layer of the seed that is visible is the endosperm. If the endosperm is colored (P – purple colored) it is visible, if it is not colored it appears cream (p – creamy yellow). Kernels that are smooth outside contain starch (S – smooth) and those that are wrinkled outside contain sugar (s - sweet).
The breeder started by establishing pure breeding parents that were homozygous dominant (PPSS) and homozygous recessive (ppss). The P1 generation crossed the two pure breeding strains (PPSS x ppss). The resulting F1 generation then was crossed to produce the corncob you have in front of you.
Dihybrid Cross:
F1 genotypes: PpSs x PpSs F1 phenotype: ______
- What are all the possible gametes for PpSs? ______
- Complete the Punnett square for this cross.
- What are the phenotype ratios and percentages for the following:
- purple and smooth ______c. yellow and smooth ______
- purple and wrinkled ______d. yellow and wrinkled ______
- Now mark the ends of 5 rows of kernels with the overhead marker. DO NOT remove the plastic!!
Count the number of kernels of each phenotype in these 5 rows and record in the table below.
Phenotype / # kernels counted / %: (# counted/total)x100purple/smooth
purple/wrinkled
yellow/smooth
yellow/wrinkled
TOTAL
- Compare your corncob percentages (#4) with the predicted percentages (#3). Did you obtain a
9:3:3:1 ratio? Use your data to support your answer.
- To determine whether the differences between your observed and predicted kernel counts are due to chance alone OR that they are truly different, you will need to conduct a chi square test.
Phenotype / Expected # (e) / Observed # / Deviation (d) / d2 / d2/e
Purple/smooth / Total x 9/16 =
Purple/wrinkled / Total x 3/16 =
Yellow/smooth / Total x 3/16 =
Yellow/wrinkled / Total x 1/16 =
Chi square value = sum of all d2/e values
- Now determine whether your observed data is a good fit with the predicted ratios. First calculate the degrees of freedom (df). # phenotypes: ______df = # phenotypes – 1 ______. Find the number in the Chi square table below in the correct df row that is closest to your calculated chi square value…..circle it!
- Explain what it means for your observed ratios to have a “good fit” or a “poor fit”. Explain how you determined whether your calculated chi square value supports or does not support the hypothesis that the parental generation was PpSs.