Hydrothermal Saline Promoted Grafting of Periodic Mesoporous Organic Sulfonic Acid Silicas for Sustainable FAME Production

C. Pirez,b,c* M. Tapia Reche,a,b A. F. Lee,a J. C. Manayil,aV. Dos-Santos,a,dK. Wilsona*

aEuropeanBioenergyResearch Institute, Aston University, Birmingham B4 7ET, UK.

bSchool of Chemistry, Cardiff University, Cardiff CF10 3AT.

cUCCS, University of Lille I, 59655 Villeneuve d’Ascq, France.

dLaboratory of Bioinorganic Chemistry and Catalysis, Federal University of Paraná, CP 19081, CEP 81531-990, Curitiba, Paraná, Brazil

*Corresponding author: E-mail:

Table S1:Reactions conditions for synthesis of PMOs.

BTSB content
/ % / Volume/weight precursor amount
TEOS
/ cm3 / BTSB
/ cm3 / P123
/ g / HCl (36%)
/ cm3 / H2O
/ cm3
0 / 7.10 / 0.00 / 3.07 / 1.00 / 96.00
25 / 5.30 / 1.50 / 3.07 / 1.00 / 96.00
50 / 3.60 / 3.00 / 3.07 / 1.00 / 96.00
75 / 1.80 / 4.60 / 3.07 / 1.00 / 96.00
100 / 0.00 / 6.10 / 3.07 / 1.00 / 96.00

Fig S1.N2physisorptionisotherms of PMOsas a function of organic content (a)SBA-BTSB0%, (b)SBA-BTSB25%, (c)SBA-BTSB50%, (d)SBA-BTSB75% and (e)SBA-BTSB100%.

Fig S2.Pore size distributions of PMOsdetermined from (A) adsorption and (B) desorption branches as a function of organic content (a) SBA-BTSB0%, (b) SBA-BTSB25%, (c) SBA-BTSB50%, (d) SBA-BTSB75% and (e) SBA-BTSB100%.

Fig S3.Low angle XRD patterns of PMOsas a function of organic content(a) SBA-BTSB0%, (b) SBA-BTSB25%, (c) SBA-BTSB50%, (d) SBA-BTSB75% and (e) SBA-BTSB100%.

Table S2. Textural properties of PMOsas a function of organic content.

BTSB
/ % / BET
/ m2.g-1 / Vp
/ cm3.g-1 / WBJH
/ nma / Plane spacing
/ nmb / Unit cell
/ nmc / Wall thickness / nmd / C loading
/ wt%e
0 / 802 / 1.34 / 7.2 / 9.8 (9.1) / 11.4 / 4.2 / 2.5
25 / 694 / 0.97 / 5.8 / 9 (8.3) / 10.4 / 4.6 / 11.2
50 / 773 / 0.93 / 5.4 / 8.9 (7.9) / 10.2 / 4.8 / 16.6
75 / 765 / 0.82 / 3.9 / 9.2 (8.4) / 10.6 / 6.7 / 21.4
100 / 867 / 0.86 / 3.9 / 9.5 (8.7) / 11 / 7.1 / 26.8

aDesorptionbranch of isotherm. bBraggslawfor (100) reflection(measuredTEM values), ca0 = (2d100)/√3, dDefined as (a0-mesopore diameter), eTGAanalysisbetween 600-800°C, fIGCanalysis.

Fig S4.Thermogravimetric profilesof PMOs as a function of organic content (a) SBA-BTSB0%, (b) SBA-BTSB25%, (c) SBA-BTSB50%, (d) SBA-BTSB75% and (e) SBA-BTSB100% highlighting regimes associated with (A) waterdesorption, (B) template oxidation, and (C) oxidation of organic framework components.

Fig S5.Mass lossbetween 600 °C and 800 °Cof PMOs as a function of organic content.

Fig S6.Raman spectra of PMOs as a function of organic content(a) SBA-BTSB0%, (b) SBA-BTSB25%, (c) SBA-BTSB50%, (d) SBA-BTSB75% and (e) SBA-BTSB100%.

Fig S7.In-vacuo DRIFT spectra of PMOsas a function of organic content recorded at 200°C(a) SBA-BTSB0%, (b) SBA-BTSB25%, (c) SBA-BTSB50%, (d) SBA-BTSB75% and (e) SBA-BTSB100%.

Fig S8. TEM images of ofPMOsas a function of organic content (a) SBA-BTSB0%, (b) SBA-BTSB25%, (c) SBA-BTSB50%, (d) SBA-BTSB75% and (e) SBA-BTSB100%.

Fig S9.N2physisorptionisotherms of sulfonated PMOsas a function of organic content (a) PrSO3H/SBA-BTSB0%, (b) PrSO3H/SBA-BTSB25%, (c) PrSO3H/SBA-BTSB50%, (d) PrSO3H/SBA-BTSB75% and (e) PrSO3H/SBA-BTSB100%.

Fig S10.Pore size distributions of sulfonated PMOsdetermined from (A) adsorption and (B) desorption branches as a function of organic content (a) PrSO3H/SBA-BTSB0%, (b) PrSO3H/SBA-BTSB25%, (c) PrSO3H/SBA-BTSB50%, (d) PrSO3H/SBA-BTSB75% and (e) PrSO3H/SBA-BTSB100%.

Fig S11.Low angle XRD patterns of sulfonated PMOs as a function of organic content (a) PrSO3H/SBA-BTSB0%, (b) PrSO3H/SBA-BTSB25%, (c) PrSO3H/SBA-BTSB50%, (d) PrSO3H/SBA-BTSB75% and (e) PrSO3H/SBA-BTSB100%.

Table S3. Textural and acid properties of sulfonated PMOsas a function of organic content.

Catalyst / BET / m2. g-1 / Vp / cm3.g-1 / WBJH / nm a / Plane spacing / nm b / Unit cell parameter / nm c / Wall thickness / nm d / Surface S content / wt% e / Acid site loadinge / mmol. g-1 f / Acid site density / nm-2 / Sulfur density / nm-2
PrSO3H/SBA-BTSB0% / 496 / 0.76 / 6.2 / 9.4 (9.2) / 10.9 / 4.7 / 4.26 / 1.6 / 1.93 / 1.61
PrSO3H/SBA-BTSB25% / 572 / 0.67 / 5.4 / 9 / 10.4 / 4.9 / 4.29 / 1.64 / 1.72 / 1.41
PrSO3H/SBA-BTSB50% / 506 / 0.54 / 3.7 / 8.9 (8.4) / 10.3 / 6.6 / 5.02 / 1.86 / 2.2 / 1.86
PrSO3H/SBA-BTSB75% / 432 / 0.4 / 3.7 / 9 / 10.4 / 6.7 / 5.31 / 2.12 / 2.94 / 2.3
PrSO3H/SBA-BTSB100% / 334 / 0.29 / 3.7 / 9.2 (8.5) / 10.6 / 6.9 / 5.58 / 2.3 / 4.1 / 3.13

aDesorption branch of isotherm. bFrom Braggs law using (100) plane, c a0 = (2d100)/√3, d a0 - pore diameter, e calculated from XPS analysis, f Based on NH3 pulse titration

Fig S12.Raman spectra of sulfonated PMOs as a function of organic content (a) PrSO3H/SBA-BTSB0%, (b) PrSO3H/SBA-BTSB25%, (c) PrSO3H/SBA-BTSB50%, (d) PrSO3H/SBA-BTSB75% and (e) PrSO3H/SBA-BTSB100%.

Fig. S13.S2p XP spectra of sulfonated PMOs as a function of organic content (a) PrSO3H/SBA-BTSB0%, (b) PrSO3H/SBA-BTSB25%, (c) PrSO3H/SBA-BTSB50%, (d) PrSO3H/SBA-BTSB75% and (e) PrSO3H/SBA-BTSB100%.

Fig. S14.In vacuo DRIFT spectraof sulfonatedPMOs as a function of organic content recorded at 200 °C (a) PrSO3H/SBA-BTSB0%, (b) PrSO3H/SBA-BTSB25%, (c) PrSO3H/SBA-BTSB50%, (d) PrSO3H/SBA-BTSB75% and (e) PrSO3H/SBA-BTSB100%.

Fig. S15.13C NMR spectra of sulfonated PMOs as a function of organic content (a) PrSO3H/SBA-BTSB0%, (b) PrSO3H/SBA-BTSB25%, (c) PrSO3H/SBA-BTSB50%, (d) PrSO3H/SBA-BTSB75% and (e) PrSO3H/SBA-BTSB100%,(★spinning side band).

Fig.S16.29Si NMR spectra of sulfonated PMOs as a function of organic content (a) PrSO3H/SBA-BTSB0%, (b) PrSO3H/SBA-BTSB25%, (c) PrSO3H/SBA-BTSB50%, (d) PrSO3H/SBA-BTSB75% and (e) PrSO3H/SBA-BTSB100%.

Fig. S17.Sulphur loading of sulfonated PMOs versus acid site density.

Fig S18.Palmitic acid esterification with methanol over sulfonated PMOs at 60 °C () PrSO3H/SBA-BTSB0%, (□) PrSO3H/SBA-BTSB25%, (Δ) PrSO3H/SBA-BTSB50%, () PrSO3H/SBA-BTSB75%, (✕)PrSO3H/SBA-BTSB100%.

Fig S19.Palmitic acid esterification with methanol and 20 wt% H2O over sulfonated PMOs at 60 °C () PrSO3H/SBA-BTSB0%, (□) PrSO3H/SBA-BTSB25%, (Δ) PrSO3H/SBA-BTSB50%, () PrSO3H/SBA-BTSB75%, ( ✕)PrSO3H/SBA-BTSB100%.

Fig S20. Conversion of propanoic acid during propanoic acid esterification with methanol at 60°C overPrSO3H/B75%

Fig. S21.Fatty acid alkyl ester production from glyceryl tripalmitate transesterification with a 1:1 MeOH/BuOH volume ratio over sulfonated PMOs at 80 °C () butylester, (□) methylester.

a)

b)

Fig. S22.Inverse gas chromatograms for (a) methanol and (b) decaneelution overPrSO3H/SBA-BTSB0%and PrSO3H/SBA-BTSB50%PMOs. (See Pirez C, Lee AF, Jones C, Wilson K (2014) Catalysis Today 234: 167. doi: for experimental method)

S1