Aqua substitution from dinuclearplatinum(II) complexes linked by diamino linkers with cyclohexyl groups by bio-relevant nucleophiles.

Supporting Information

Fig.SI 1.1H NMR(400 MHz, CDCl3) spectrum for N,N-bis(2-pyridylmethyl)cyclohexylamine.

Fig.SI 2.13C NMR(100 MHz, CDCl3) spectrum for N,N-bis(2-pyridylmethyl)cyclohexylamine.

Fig.SI 3.Mass spectrum for N,N-bis(2-pyridylmethyl)cyclohexylamine.

Fig.SI 4.1H NMR (DMF-d7) spectrum for Pt1.

Fig.SI 5.13C NMR (DMF-d7) spectrum for Pt1.

Fig.SI 6.195Pt NMR (85 MHz, DMF-d7) spectrum for Pt1.

Fig.SI 7.Mass spectrum for Pt1.

Fig.SI 8.1H NMR (400 MHz, CDCl3) spectrum for N,N,N′,N′-tetrakis(2-pyridylmethyl)-trans-1,4-cyclohexyldiamine.

Fig.SI 9.13C NMR(100 MHz, CDCl3) spectra for N,N,N′,N′-tetrakis(2-pyridylmethyl)-trans-1,4-cyclohexyldiamine.

Fig.SI 10.Mass spectrum for N,N,N′,N′-tetrakis(2-pyridylmethyl)-trans-1,4-cyclohexyldiamine.

Fig.SI 11.1H NMR (DMF-d7) spectrum for Pt2.

Fig.SI 12.13C NMR (DMF-d7) spectrum for Pt2.

Fig.SI 13.195Pt NMR (85 MHz, DMF-d7) spectra for Pt2.

Fig.SI 14.Mass spectrum ofPt2.

Fig.SI 15.1H NMR(400MHz, CDCl3) spectrum for N,N,N′,N′-tetrakis(2-pyridylmethyl)-4,4′-methylenedicyclohexyldiamine.

Fig.SI 16.13C NMR(400 MHz DMF-d7) spectra for N,N,N′,N′-tetrakis(2-pyridylmethyl)-4,4′-methylenedicyclohexyldiamine.

Figure SI 17.1H NMR(DMF-d7) spectrum for Pt3.

Fig.SI 18.13C NMR(100 MHz, DMF-d7) spectrum for Pt3.

Fig.SI 19.195Pt NMR(100 MHz, DMF-d7) spectrum for Pt3.

Fig.SI 20.Mass spectrum ofPt3.

Table SI 1 Summary of the wavelengths (nm) used for monitoring aqua substitution fromplatinum(II) reactions byGlu, Pen and His.

Complex
Glu / Pen / His
Pt1 / 248 / 300 / 293
Pt2 / 300 / 300 / 267
Pt3 / 300 / 300 / 267

Table SI 2Average observed rate constants, kobsat 298 K for the reaction of Pt1withGlu, Pen and Hisas a function of concentration.

[Nu]x10-3, M / Glu / kobs, s-1
Pen / His
0.998 / 2.40x10-3 / 1.23 x10-4 / 0.49 x10-4
1.994 / 4.64 x10-3 / 2.47 x10-4 / 0.98 x10-4
2.995 / 6.54 x10-3 / 3.70 x10-4 / 1.47 x10-4
3.994 / 8.80 x10-3 / 4.99 x10-4 / 2.02 x10-4
4.992 / 11.24 x10-3 / 6.19 x10-4 / 2.54 x10-4

Fig.SI 21.Kinetic Traces for (a) Glu + Pt1(298 K, 248 nm), (b) Pen + Pt1(298 K, 300 nm).

Table SI 3.Temperature dependence of k2 M-1 s-1 for the simultaneous substitution of aqua ligands in Pt1.

I/Tx10-3, K-1 / Glu / ln(k2/T)
Pen / His
3.472 / -5.43 / -8.44 / -9.35
3.413 / -5.16 / -8.17 / -9.06
3.356 / -4.78 / -7.78 / -8.65
3.300 / -4.36 / -7.39 / -8.27
3.247 / -4.13 / -7.12 / -8.01

Table SI 4.Analysis results of Eyring plots for the aqua substitution of Pt1 by Glu, Pen and His.

Nucleophile / y-intercept / slope / ∆H≠ (kJ mol-1) / ∆S≠(JK-1mol-1)
Glu / 15.41 / -6012 / 50±3 / -70±9
Pen / 10.47 / -5444 / 45±5 / -110±15
His / 11.98 / -6152 / 51±2 / -98±6

Table SI 5. Average observed rate constants, kobsat 298 K for the reaction of Pt2 withGlu, Pen and Hisas a function of concentration.

Glu / Pen / His
[Nu]x10-3, M / kobs, s-1
1.997 / 2.58 x10-3 / 0.96 x10-4 / 0.48 x10-4
3.994 / 5.24 x10-3 / 1.93 x10-4 / 0.96 x10-4
5.991 / 7.87 x10-3 / 2.89 x10-4 / 1.41 x10-4
7.988 / 10.28 x10-3 / 3.81 x10-4 / 1.90 x10-4
9.985 / 13.00 x10-3 / 4.80 x10-4 / 2.36 x10-4

Fig.SI 22.Examples ofkinetic traces for the reactions: (a). Glu(100-fold) + Pt2 (298 K, 300 nm); (b). Pen(100-fold) + Pt2 (298 K, 300 nm).

Table SI 6.Temperature dependence of k2, M-1 s-1 for the simultaneous substitution of aqua ligands in Pt2 byGlu, Pen and His.

1/T x10-3, K-1 / Glu / ln(k2/T)
Pen / His
3.472 / -6.10 / -9.38 / -12.39
3.413 / -5.87 / -9.11 / -12.13
3.356 / -5.44 / -8.72 / -11.74
3.300 / -4.95 / -8.33 / -11.35
3.247 / -4.68 / -8.08 / -11.06

Table SI 7. Data from Eyring plots for the reaction of Pt2 withGlu, Pen and His.

Nucleophile / y-intercept / slope / ∆H≠ (kJ mol-1) / ∆S≠ (J K-1mol-1)
Glu / 16.92 / -6652 / 55±4 / -57±13
Pen / 10.79 / -5820 / 48±3 / -108±9
His / 8.86 / -6135 / 51±2 / -124±7

Table SI 9 Average observed rate constants, kobsat 298K for the reaction ofPt3 with Glu, Penand Hisas a function of concentration.

[Nu] x 10-3, M / Glu / kobs, s-1
Pen x 10-4 / His x 10-4
1.997 / 2.93 x 10-3 / 1.95 x 10-4 / 0.85 x 10-4
3.994 / 5.70 x 10-3 / 3.91 x 10-4 / 1.65 x 10-4
5.992 / 8.71 x 10-3 / 5.90 x 10-4 / 2.48 x 10-4
7.989 / 11.70 x 10-3 / 7.68 x 10-4 / 3.33 x 10-4
9.986 / 14.62 x 10-3 / 9.76 x 10-4 / 4.18 x 10-4

Fig.SI 23.Concentration dependence kobsfor the substitution of aqua ligands of Pt3 with Glu, Pen, His.

Table SI 10. Temperature dependence of k2, M-1s-1 for the simultaneous substitution of aqua ligands in Pt3 by with Glu, Pen, His.

I/T x10-3, K-1 / Glu / ln(k2/T)
Pen / His
3.472 / -6.1287 / -8.681 / -9.374
3.413 / -5.8383 / -8.409 / -9.147
3.356 / -5.4395 / -8.022 / -8.869
3.300 / -5.0527 / -7.641 / -8.366
3.247 / -4.8181 / -7.350 / -7.915

Figure SI 24.Eyring plots for the aqua substitution reactions of Pt3by Glu, Pen, His.

Table SI 11.Data fromEyring plots for the aqua substitution of Pt3by Glu, Pen, His.

Nucleophile / y-intercept / slope / ∆H≠ (kJ mol-1) / ∆S≠(JK-1mol-1)
Glu / 14.86 / -6053 / 50±2 / -74±6
Pen / 12.42 / -6089 / 51±2 / -94±6
His / 13.25 / -6548 / 54±6 / -88±18

Table SI 12.Summary of DFT computed data for the platinum(II) complexes.

(*Data extracted from ref 11a)

Property / Pt1 / Pt2 / Pt3
Bond lengths (Å)
Pt-OH2* / 2.161 / 2.144 / 2.156
Separation / Distances / (Å)
Pt1-Pt2* / - / 8.77 / 14.20
NBO charges* / 1.203 / 1.220 / 1.215